Skip to main content

Drug Interactions between Acid Controller Complete and fingolimod

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

famotidine fingolimod

Applies to: Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide) and fingolimod

MONITOR: The risk of bradycardia and atrioventricular (AV) block may be increased during initiation of fingolimod treatment in patients receiving beta-blockers, calcium channel blockers, digitalis, or other drugs that can slow the heart rate or AV conduction such as alectinib, atazanavir, flecainide, ivabradine, lacosamide, lithium, mefloquine, moricizine, propafenone, succinylcholine, thalidomide, H2-receptor antagonists, tricyclic antidepressants, and anticholinesterase or cholinergic agents. Fingolimod can cause a decrease in heart rate during initiation of therapy that is apparent within an hour of the first dose and maximal at approximately 6 hours postdose in most cases, but occasionally up to 20 hours after the first dose. Further, but smaller decreases in heart rate may occur after the second dose, although heart rate eventually returns to baseline within one month of chronic treatment. The mean decrease in heart rate in patients receiving fingolimod 0.5 mg at 6 hours after the first dose was approximately 13 beats per minute (bpm). Heart rates below 40 bpm were rarely observed. In controlled clinical trials, adverse reactions of symptomatic bradycardia (hypotension, dizziness, fatigue, palpitations, chest pain) following the first dose were reported in 0.5% of patients receiving fingolimod 0.5 mg, compared to no patient on placebo. Initiation of fingolimod treatment has also resulted in transient AV conduction delays. First- and second-degree AV block (prolonged PR interval on ECG) following the first dose were each reported in 0.1% of patients receiving fingolimod 0.5 mg, compared to no patient on placebo. In a study of 698 patients with available 24-hour Holter monitoring data after their first dose, second degree AV blocks, usually Mobitz type I (Wenckebach), were reported in 3.7% of patients receiving fingolimod 0.5 mg and 2% of patients receiving placebo. Bradycardia and conduction abnormalities were usually transient and asymptomatic, and resolved within the first 24 hours on treatment, but they occasionally required treatment with atropine or isoproterenol.

MANAGEMENT: Fingolimod has not been adequately studied in patients receiving other drugs that can slow the heart rate or AV conduction. Close monitoring is recommended during initiation of fingolimod treatment in these patients. The first dose should always be administered in a setting where resources to appropriately manage symptomatic bradycardia are available. Patients should be observed for a period of six hours after the first dose for signs and symptoms of bradycardia with hourly pulse and blood pressure measurement. An electrocardiogram should be obtained prior to dosing and at the end of the observation period. Additional observation is recommended if the heart rate 6 hours postdose is less than 45 bpm or is at the lowest value postdose, or if the ECG 6 hours postdose shows new onset second-degree or higher AV block. Should postdose symptomatic bradycardia occur, initiate appropriate management, begin continuous ECG monitoring, and continue observation until the symptoms have resolved. Should a patient require pharmacologic intervention for symptomatic bradycardia, continuous overnight ECG monitoring in a medical facility should be instituted, and the first-dose monitoring strategy should be repeated after the second dose of fingolimod. The same precautions are applicable if, after the first month of treatment, fingolimod is discontinued for more than two weeks and then restarted, since the effects on heart rate and AV conduction may recur on reintroduction of fingolimod. Within the first 2 weeks of treatment, first-dose procedures are also recommended after interruption of one day or more; during week 3 and 4 of treatment, first-dose procedures are recommended after treatment interruption of more than 7 days.

References

  1. (2010) "Product Information. Gilenya (fingolimod)." Novartis Pharmaceuticals
  2. FDA. U.S. Food and Drug Administration (2012) FDA Drug Safety Communication: Revised recommendations for cardiovascular monitoring and use of multiple sclerosis drug Gilenya (fingolimod). http://www.fda.gov/Drugs/DrugSafety/ucm303192.htm#data

Switch to consumer interaction data

Minor

famotidine calcium carbonate

Applies to: Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide) and Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Minor

famotidine magnesium hydroxide

Applies to: Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide) and Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Drug and food interactions

Moderate

calcium carbonate food

Applies to: Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
View all 6 references

Switch to consumer interaction data

Minor

famotidine food

Applies to: Acid Controller Complete (calcium carbonate / famotidine / magnesium hydroxide)

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References

  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM (1990) "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol, 38, p. 165-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.