Skip to main content

Drug Interactions between Acid Controller Complete Dual Action and letrozole / ribociclib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

famotidine ribociclib

Applies to: Acid Controller Complete Dual Action (calcium carbonate / famotidine / magnesium hydroxide) and letrozole / ribociclib

MONITOR: Famotidine may cause QTc prolongation. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. According to the manufacturer, prolongation of the QT interval has been reported very rarely in patients with impaired renal function whose dose/dosing interval of famotidine may not have been adjusted appropriately. In general, the risk of an individual agent or a combination of these agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Caution and clinical monitoring are recommended if famotidine is used in combination with other drugs that can prolong the QT interval. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. (2002) "Product Information. Pepcid (famotidine)." Merck & Co., Inc
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."

Switch to consumer interaction data

Moderate

magnesium hydroxide ribociclib

Applies to: Acid Controller Complete Dual Action (calcium carbonate / famotidine / magnesium hydroxide) and letrozole / ribociclib

MONITOR: Bowel cleansing as well as overuse of certain laxatives may cause electrolyte loss and increase the risk of torsade de pointes ventricular arrhythmia in patients treated with drugs that prolong the QT interval. Electrolyte disturbances including hypokalemia and hypomagnesemia have been reported with laxative abuse and are known risk factors for torsade de pointes associated with QT interval prolongation.

MANAGEMENT: Patients treated with drugs that prolong the QT interval should exercise caution when self-medicating with laxatives. The recommended dosage and duration of use should not be exceeded. Patients treated with lactulose for more than six months should be monitored periodically for electrolyte imbalance. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. Chin RL (1998) "Laxative-induced hypokalemia." Ann Emerg Med, 32, p. 517-8
  2. Muller-Lissner SA (1993) "Adverse effects of laxatives: fact and fiction." Pharmacology, 47, p. 138-45
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  5. Cerner Multum, Inc. "Australian Product Information."
  6. Schaefer DC, Cheskin LJ (1998) "Constipation in the elderly." Am Fam Physician, 58, p. 907-14
View all 6 references

Switch to consumer interaction data

Moderate

letrozole ribociclib

Applies to: letrozole / ribociclib and letrozole / ribociclib

MONITOR: Coadministration with ribociclib may increase the plasma concentrations and pharmacologic effects of drugs that are substrates of CYP450 3A4. The proposed mechanism is decreased clearance due to ribociclib-mediated inhibition of CYP450 3A4 metabolism. In healthy study subjects, administration of midazolam, a sensitive CYP450 3A4 substrate, with multiple 400 mg daily doses of ribociclib increased the midazolam peak plasma concentration (Cmax) and systemic exposure (AUC) by 2.1-fold and 3.8-fold, respectively, compared to midazolam administered alone. When given at a clinically relevant dose of 600 mg daily, ribociclib is predicted to increase midazolam Cmax and AUC by 2.4-fold and 5.2-fold, respectively.

MANAGEMENT: Caution is advised when ribociclib is used concomitantly with drugs that undergo metabolism by CYP450 3A4, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever ribociclib is added to or withdrawn from therapy.

References

  1. Zhou XJ, Zhou-Pan XR, Gauthier T, Placidi M, Maurel P, Rahmani R (1993) "Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation. Metabolic drug interactions." Biochem Pharmacol, 45, p. 853-61
  2. Trivier JM, Libersa C, Belloc C, Lhermitte M (1993) "Amiodarone N-deethylation in human liver microsomes: involvement of cytochrome P450 3A enzymes (first report)." Life Sci, 52, pl91-6
  3. Rawden HC, Kokwaro GO, Ward SA, Edwards G (2000) "Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes." Br J Clin Pharmacol, 49, p. 313-22
  4. DSouza DL, Levasseur LM, Nezamis J, Robbins DK, Simms L, Koch KM (2001) "Effect of alosetron on the pharmacokinetics of alprazolam." J Clin Pharmacol, 41, p. 452-4
  5. Katoh M, Nakajima M, Yamazaki H, Yokoi T (2001) "Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport." Eur J Pharm Sci, 12, p. 505-13
  6. Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42
  7. Yu DK (1999) "The contribution of P-glycoprotein to pharmacokinetic drug-drug interactions." J Clin Pharmacol, 39, p. 1203-11
  8. Nagy J, Schipper HG, Koopmans RP, Butter JJ, van Boxtel CJ, Kager PA (2002) "Effect of grapefruit juice or cimetidine coadministration on albendazole bioavailability." Am J Trop Med Hyg, 66, p. 260-3
  9. (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals
View all 9 references

Switch to consumer interaction data

Minor

famotidine calcium carbonate

Applies to: Acid Controller Complete Dual Action (calcium carbonate / famotidine / magnesium hydroxide) and Acid Controller Complete Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Minor

famotidine magnesium hydroxide

Applies to: Acid Controller Complete Dual Action (calcium carbonate / famotidine / magnesium hydroxide) and Acid Controller Complete Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Drug and food interactions

Moderate

calcium carbonate food

Applies to: Acid Controller Complete Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
View all 6 references

Switch to consumer interaction data

Moderate

ribociclib food

Applies to: letrozole / ribociclib

GENERALLY AVOID: Pomegranates and grapefruit may increase the systemic exposure to ribociclib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in these fruits. Increased exposure to ribociclib may increase the risk of adverse effects such as infections, neutropenia, leukopenia, anemia, thrombocytopenia, anorexia, nausea, vomiting, diarrhea, stomatitis, alopecia, fatigue, headache, and abnormal liver function may be increased.

MANAGEMENT: Patients receiving ribociclib should avoid consumption of pomegranates or pomegranate juice and grapefruit or grapefruit juice during treatment.

References

  1. (2017) "Product Information. Kisqali (ribociclib)." Novartis Pharmaceuticals

Switch to consumer interaction data

Minor

famotidine food

Applies to: Acid Controller Complete Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References

  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM (1990) "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol, 38, p. 165-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.