Drug Interactions between acetaminophen / propoxyphene and nilotinib
This report displays the potential drug interactions for the following 2 drugs:
- acetaminophen/propoxyphene
- nilotinib
Interactions between your drugs
propoxyphene nilotinib
Applies to: acetaminophen / propoxyphene and nilotinib
GENERALLY AVOID: Nilotinib can cause concentration-dependent prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. Nilotinib treatment alone has been associated with reported cases of sudden death. The early occurrence of some of these deaths relative to the initiation of nilotinib suggests the possibility that ventricular repolarization abnormalities may have been involved. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: Coadministration of nilotinib with other drugs that can prolong the QT interval should generally be avoided. Should treatment with other QT-prolonging drugs be required, the manufacturer recommends that nilotinib therapy be withheld temporarily. Caution and clinical monitoring are recommended if concomitant use is unavoidable. Patients should have frequent ECGs and be monitored for arrhythmias when QT interval is prolonged. A QTc interval exceeding 480 msec will require suspension of nilotinib therapy and immediate action to correct any concomitant risk factors before resuming treatment. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.
References (4)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
- (2007) "Product Information. Tasigna (nilotinib)." Novartis Pharmaceuticals
- Cerner Multum, Inc. "Australian Product Information."
Drug and food interactions
propoxyphene food
Applies to: acetaminophen / propoxyphene
GENERALLY AVOID: Alcohol may have additive CNS- and/or respiratory-depressant effects with propoxyphene. Misuse of propoxyphene, either alone or in combination with other CNS depressants, has been a major cause of drug-related deaths, particularly in patients with a history of emotional disturbances, suicidal ideation, or alcohol and drug abuse.
MANAGEMENT: The use of alcohol during propoxyphene therapy should be avoided. Patients should be warned not to exceed the recommended dosage of propoxyphene and to avoid activities requiring mental alertness until they know how these agents affect them.
References (1)
- (2001) "Product Information. Darvon (propoxyphene)." Lilly, Eli and Company
nilotinib food
Applies to: nilotinib
GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of nilotinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Because nilotinib is associated with concentration-dependent prolongation of the QT interval, increased levels may potentiate the risk of ventricular arrhythmias such as torsade de pointes and sudden death.
ADJUST DOSING INTERVAL: Food increases the oral bioavailability of nilotinib. The mechanism of interaction is unknown. Compared to the fast state, nilotinib systemic exposure (AUC) increased by 82% when the dose was given 30 minutes after a high-fat meal. Because nilotinib is associated with concentration-dependent prolongation of the QT interval, increased levels may potentiate the risk of ventricular arrhythmias such as torsade de pointes and sudden death.
MANAGEMENT: Patients treated with nilotinib should avoid consumption of grapefruit, grapefruit juice, and any supplement containing grapefruit extract. In addition, no food should be consumed for at least 2 hours before and 1 hour after a nilotinib dose.
References (1)
- (2007) "Product Information. Tasigna (nilotinib)." Novartis Pharmaceuticals
acetaminophen food
Applies to: acetaminophen / propoxyphene
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
acetaminophen food
Applies to: acetaminophen / propoxyphene
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.