Drug Interactions between acetaminophen / propoxyphene and adagrasib
This report displays the potential drug interactions for the following 2 drugs:
- acetaminophen/propoxyphene
- adagrasib
Interactions between your drugs
propoxyphene adagrasib
Applies to: acetaminophen / propoxyphene and adagrasib
GENERALLY AVOID: Adagrasib can cause concentration-dependent, prolongation of the QT interval. Coadministration with other agents that can prolong the QT interval may increase the risk of ventricular arrhythmias including torsade de pointes and sudden death. According to cardiac electrophysiology data provided by the manufacturer, the mean (90% CI) QTcF change from baseline was 18 ms at the mean steady-state maximum concentration (Cmax,ss) after administration of adagrasib 600 mg twice daily. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
GENERALLY AVOID: Adagrasib may increase the plasma concentrations and adverse effects of sensitive CYP450 2C9, 2D6 or P-glycoprotein (P-gp) substrates. Adagrasib is an inhibitor of CYP450 2C9, 2D6, and P-gp. In pharmacokinetic studies, adagrasib 600 mg twice daily is predicted to increase warfarin (a sensitive CYP450 2C9 substrate) peak plasma concentration (Cmax) and systemic exposure (AUC) by 1.1-fold and 2.9-fold, respectively. Also, adagrasib 600 mg twice daily is predicted to increase dextromethorphan (a sensitive CYP450 2D6 substrate) Cmax and AUC by 1.7-fold and 2.4-fold, respectively. In addition, adagrasib 600 mg twice daily is predicted to increase digoxin (a P-gp substrate) Cmax and AUC by 1.9-fold and 1.5-fold, respectively.
MANAGEMENT: Coadministration of adagrasib with other drugs that can prolong the QT interval and/or are sensitive substrates of CYP450 2C9, 2D6 or P-gp should generally be avoided.
References (1)
- (2022) "Product Information. Krazati (adagrasib)." Mirati Therapeutics, Inc.
Drug and food interactions
propoxyphene food
Applies to: acetaminophen / propoxyphene
GENERALLY AVOID: Alcohol may have additive CNS- and/or respiratory-depressant effects with propoxyphene. Misuse of propoxyphene, either alone or in combination with other CNS depressants, has been a major cause of drug-related deaths, particularly in patients with a history of emotional disturbances, suicidal ideation, or alcohol and drug abuse.
MANAGEMENT: The use of alcohol during propoxyphene therapy should be avoided. Patients should be warned not to exceed the recommended dosage of propoxyphene and to avoid activities requiring mental alertness until they know how these agents affect them.
References (1)
- (2001) "Product Information. Darvon (propoxyphene)." Lilly, Eli and Company
adagrasib food
Applies to: adagrasib
ADJUST DOSING INTERVAL: Adagrasib can cause concentration-dependent, prolongation of the QT interval. Theoretically, coadministration with grapefruit juice before adagrasib has reached steady-state may significantly increase the plasma concentrations of adagrasib, which is primarily metabolized by CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported for the potent CYP450 3A4 inhibitor, itraconazole. In a clinical drug interaction study, adagrasib peak plasma concentration (Cmax) and systemic exposure (AUC) were increased by 2.4-fold and 4-fold, respectively following concomitant use of a single dose of adagrasib (200 mg) with itraconazole. No clinically significant differences in the pharmacokinetics of adagrasib at steady state were predicted when used concomitantly with itraconazole. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to adagrasib may increase the risk of adverse effects such as QT prolongation, diarrhea, fatigue, musculoskeletal pain, hepatotoxicity, and renal impairment.
Adagrasib pharmacokinetics were not significantly affected when administered with a high-fat meal.
MANAGEMENT: Although clinical data are lacking, it may be advisable to avoid the consumption of grapefruit or grapefruit juice until adagrasib concentrations have reached steady state (after approximately 8 days). Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope. Adagrasib may be administered with or without food.
References (1)
- (2022) "Product Information. Krazati (adagrasib)." Mirati Therapeutics, Inc.
acetaminophen food
Applies to: acetaminophen / propoxyphene
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
acetaminophen food
Applies to: acetaminophen / propoxyphene
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.