Skip to main content

Drug Interactions between acetaminophen / pentazocine and mipomersen

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

acetaminophen mipomersen

Applies to: acetaminophen / pentazocine and mipomersen

MONITOR CLOSELY: Coadministration of mipomersen with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Mipomersen can cause elevations in serum transaminases and hepatic steatosis. In a premarketing clinical trial, 12% (4/34) of patients treated with mipomersen had at least one elevation in alanine aminotransferase (ALT) 3 times the upper limit of normal (ULN) or greater, and 9% (3/34) had at least one elevation in ALT 5 times ULN or greater, compared to 0% of the 17 patients treated with placebo. There were no concomitant clinically meaningful elevations of total bilirubin, international normalized ratio (INR), or partial thromboplastin time (PTT). Mipomersen also increases hepatic fat, with or without concomitant increases in transaminases. In clinical trials of patients with heterozygous familial hypercholesterolemia and hyperlipidemia, the median absolute increase in hepatic fat was 10% after 26 weeks of treatment, from 0% at baseline, measured by magnetic resonance imaging. The long-term consequences of hepatic steatosis associated with mipomersen therapy are unknown. Hepatic steatosis may be a risk factor for progressive liver disease, including steatohepatitis and cirrhosis.

MANAGEMENT: Caution is advised if mipomersen is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; amiodarone; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; kinase inhibitors; methotrexate; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; tamoxifen; tetracyclines; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; other lipid-lowering medications such as fenofibrate, lomitapide, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Mipomersen has not been studied with other LDL-lowering agents that can also increase hepatic fat, thus concomitant use is not recommended. Patients treated with mipomersen should have serum ALT, AST, alkaline phosphatase, and total bilirubin measured prior to initiation of treatment and regularly during treatment in accordance with the product labeling, and the dosing adjusted or interrupted as necessary. Since alcohol may increase levels of hepatic fat and induce or exacerbate liver injury, the manufacturer recommends that patients taking mipomersen not consume more than one alcoholic drink per day. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, malaise, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. "Product Information. Kynamro (mipomersen)." Genzyme Corporation (2013):

Switch to consumer interaction data

Drug and food interactions

Major

mipomersen food

Applies to: mipomersen

GENERALLY AVOID: Coadministration with alcohol may increase the risk of hepatotoxicity associated with the use of mipomersen. Mipomersen can cause elevations in serum transaminases and hepatic steatosis. In a premarketing clinical trial, 12% (4/34) of patients treated with mipomersen had at least one elevation in alanine aminotransferase (ALT) 3 times the upper limit of normal (ULN) or greater, and 9% (3/34) had at least one elevation in ALT 5 times ULN or greater, compared to 0% of the 17 patients treated with placebo. There were no concomitant clinically meaningful elevations of total bilirubin, international normalized ratio (INR), or partial thromboplastin time (PTT). Mipomersen also increases hepatic fat, with or without concomitant increases in transaminases. In clinical trials of patients with heterozygous familial hypercholesterolemia and hyperlipidemia, the median absolute increase in hepatic fat was 10% after 26 weeks of treatment, from 0% at baseline, measured by magnetic resonance imaging. The long-term consequences of hepatic steatosis associated with mipomersen therapy are unknown. Hepatic steatosis may be a risk factor for progressive liver disease, including steatohepatitis and cirrhosis.

MANAGEMENT: Since alcohol may increase levels of hepatic fat and induce or exacerbate liver injury, the manufacturer recommends that patients taking mipomersen not consume more than one alcoholic drink per day.

References

  1. "Product Information. Kynamro (mipomersen)." Genzyme Corporation (2013):

Switch to consumer interaction data

Major

acetaminophen food

Applies to: acetaminophen / pentazocine

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Moderate

pentazocine food

Applies to: acetaminophen / pentazocine

MONITOR: Smoking tobacco may decrease the plasma concentrations and effects of pentazocine by enhancing its metabolic clearance.

MANAGEMENT: The possibility of reduced therapeutic effects of pentazocine should be considered in smokers.

References

  1. Miller LG "Recent developments in the study of the effects of cigarette smoking on clinical pharmacokinetics and clinical pharmacodynamics." Clin Pharmacokinet 17 (1989): 90-108
  2. D'Arcy PF "Tobacco smoking and drugs: a clinically important interaction?" Drug Intell Clin Pharm 18 (1984): 302-7
  3. "Product Information. Talacen (acetaminophen-pentazocine)." Sanofi-Synthelabo Inc (2006):

Switch to consumer interaction data

Moderate

pentazocine food

Applies to: acetaminophen / pentazocine

GENERALLY AVOID: Ethanol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

MANAGEMENT: Concomitant use of opioid analgesics with ethanol should be avoided.

References

  1. Linnoila M, Hakkinen S "Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving." Clin Pharmacol Ther 15 (1974): 368-73
  2. Sturner WQ, Garriott JC "Deaths involving propoxyphene: a study of 41 cases over a two-year period." JAMA 223 (1973): 1125-30
  3. Girre C, Hirschhorn M, Bertaux L, et al. "Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers." Eur J Clin Pharmacol 41 (1991): 147-52
  4. Levine B, Saady J, Fierro M, Valentour J "A hydromorphone and ethanol fatality." J Forensic Sci 29 (1984): 655-9
  5. Sellers EM, Hamilton CA, Kaplan HL, Degani NC, Foltz RL "Pharmacokinetic interaction of propoxyphene with ethanol." Br J Clin Pharmacol 19 (1985): 398-401
  6. Carson DJ "Fatal dextropropoxyphene poisoning in Northern Ireland. Review of 30 cases." Lancet 1 (1977): 894-7
  7. Rosser WW "The interaction of propoxyphene with other drugs." Can Med Assoc J 122 (1980): 149-50
  8. Edwards C, Gard PR, Handley SL, Hunter M, Whittington RM "Distalgesic and ethanol-impaired function." Lancet 2 (1982): 384
  9. Kiplinger GF, Sokol G, Rodda BE "Effect of combined alcohol and propoxyphene on human performance." Arch Int Pharmacodyn Ther 212 (1974): 175-80
View all 9 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.