Skip to main content

Drug Interactions between acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine and digoxin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

digoxin pseudoephedrine

Applies to: digoxin and acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine

MONITOR: The concomitant use of sympathomimetic agents and cardiac glycosides may increase the risk of cardiac arrhythmias. The mechanism of this interaction is not known. Increased ectopic pacemaker activity has been reported to occur in patients taking digoxin in combination with pseudoephedrine.

MANAGEMENT: Caution should be exercised if these two drugs are coadministered. Electrocardiogram monitoring (ECG) is recommended. The use of epinephrine (adrenaline) with high doses of digitalis glycosides is not recommended.

References

  1. "Product Information. Isuprel (isoproterenol)." Sanofi Winthrop Pharmaceuticals PROD (2001):
  2. "Product Information. Lanoxin (digoxin)." Glaxo Wellcome PROD (2001):
  3. "Product Information. EPINEPHrine Hydrochloride (EPINEPHrine)." Abbott Pharmaceutical (2022):
  4. "Product Information. Claritin-D (loratadine-pseudoephedrine)." Schering-Plough PROD (2001):
  5. "Product Information. Allegra-D (fexofenadine-pseudoephedrine)." Chattem Consumer Products PROD (2001):
  6. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  7. Cerner Multum, Inc. "Australian Product Information." O 0
View all 7 references

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Moderate

dextromethorphan food

Applies to: acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology 15 (1986): 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc. (1990):
  3. "Product Information. Fycompa (perampanel)." Eisai Inc (2012):
  4. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
View all 4 references

Switch to consumer interaction data

Moderate

pseudoephedrine food

Applies to: acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Minor

digoxin food

Applies to: digoxin

Administration of digoxin with a high-fiber meal has been shown to decrease its bioavailability by almost 20%. Fiber can sequester up to 45% of the drug when given orally. Patients should be advised to maintain a regular diet without significant fluctuation in fiber intake while digoxin is being titrated.

Grapefruit juice may modestly increase the plasma concentrations of digoxin. The mechanism is increased absorption of digoxin due to mild inhibition of intestinal P-glycoprotein by certain compounds present in grapefruits. In 12 healthy volunteers, administration of grapefruit juice with and 30 minutes before, as well as 3.5, 7.5, and 11.5 hours after a single digoxin dose (0.5 mg) increased the mean area under the plasma concentration-time curve (AUC) of digoxin by just 9% compared to administration with water. Moreover, P-glycoprotein genetic polymorphism does not appear to influence the magnitude of the effects of grapefruit juice on digoxin. Thus, the interaction is unlikely to be of clinical significance.

References

  1. Darcy PF "Nutrient-drug interactions." Adverse Drug React Toxicol Rev 14 (1995): 233-54
  2. Becquemont L, Verstuyft C, Kerb R, et al. "Effect of grapefruit juice on digoxin pharmacokinetics in humans." Clin Pharmacol Ther 70 (2001): 311-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.