Drug Interactions between acetaminophen / dextromethorphan / diphenhydramine and potassium citrate
This report displays the potential drug interactions for the following 2 drugs:
- acetaminophen/dextromethorphan/diphenhydramine
- potassium citrate
Interactions between your drugs
diphenhydrAMINE potassium citrate
Applies to: acetaminophen / dextromethorphan / diphenhydramine and potassium citrate
CONTRAINDICATED: The following interaction does not apply to all products containing potassium citrate. It is applicable to certain oral solid formulations of potassium citrate used primarily for potassium supplementation, and the prescriber should consult the individual product labeling for more specific information and guidance.
Concomitant use of agents with anticholinergic properties (e.g., antihistamines, antispasmodics, neuroleptics, phenothiazines, skeletal muscle relaxants, tricyclic antidepressants, the class IA antiarrhythmic disopyramide) may potentiate the risk of upper gastrointestinal injury associated with oral solid formulations of potassium citrate. The proposed mechanism involves increased gastrointestinal transit time due to reduction of stomach and intestinal motility by anticholinergic agents, thereby creating a high localized concentration of potassium ions in the region of a dissolving tablet or capsule and increasing the contact time with GI mucosa. Solid formulations of potassium chloride have been associated with upper GI bleeding and small bowel ulceration, stenosis, perforation, and obstruction. Deaths have been reported rarely. In clinical studies, short-term coadministration of wax-matrix or microencapsulated formulations of potassium chloride and potassium citrate at high dosages in combination with an anticholinergic agent such as glycopyrrolate resulted in more frequent and more serious endoscopic lesions than potassium therapy alone. However, the lesions were not accompanied by bleeding or epigastric symptoms. Some investigators have suggested a higher risk of upper GI lesions with wax-matrix than microencapsulated formulations, although existing data are limited and conflicting.
MANAGEMENT: The use of oral solid formulations of potassium citrate is considered contraindicated in patients receiving agents with anticholinergic properties at sufficient doses to exert anticholinergic effects. A liquid formulation of potassium citrate should be considered. Patients prescribed a solid oral formulation should be advised to discontinue potassium therapy and contact their physician if they experience potential symptoms of upper GI injury such as severe vomiting, abdominal pain, distention, and gastrointestinal bleeding.
References (12)
- Lambert JR, Newman A (1980) "Ulceration and stricture of the esophagus due to oral potassium chloride (slow release tablet) therapy." Am J Gastroenterol, 73, p. 508-11
- Farquharson-Roberts MA, Giddings AE, Nunn AJ (1975) "Perforation of small bowel due to slow release potassium chloride (slow-K)." Br Med J, 3, p. 206
- Wynn V (1965) "Potassium chloride and bowel ulceration." Br Med J, 5477, p. 1546
- McMahon FG, Ryan JR, Akdamar K, Ertan A (1984) "Effect of potassium chloride supplements on upper gastrointestinal mucosa." Clin Pharmacol Ther, 35, p. 852-5
- McMahon FG, Ryan JR, Akdamar K, Ertan A (1982) "Upper gastrointestinal lesions after potassium chloride supplements: a controlled clinical trial." Lancet, 2, p. 1059-61
- Leijonmarck CE, Raf L (1985) "Gastrointestinal lesions and potassium chloride supplements." Lancet, 1, p. 56-7
- Lofgren RP, Rothe PR, Carlson GJ (1982) "Jejunal perforation associated with slow-release potassium chloride therapy." South Med J, 75, p. 1154-5
- Leijonmarck CE, Raf L (1985) "Ulceration of the small intestine due to slow-release potassium chloride tablets." Acta Chir Scand, 151, p. 273-8
- Weiss SM, Rutenberg HL, Paskin DL, Zaren HA (1977) "Gut lesions due to slow-release KCI tablets." N Engl J Med, 296, p. 111-2
- (2001) "Product Information. K-Dur (potassium chloride)." Schering Corporation
- "Product Information. Urocit-K (potassium citrate)." Mission Pharmacal Company
- Heffernan SJ, Murphy JJ (1975) "Ulceration of small intestine and slow-release potassium tablets." Br Med J, 2, p. 746
dextromethorphan diphenhydrAMINE
Applies to: acetaminophen / dextromethorphan / diphenhydramine and acetaminophen / dextromethorphan / diphenhydramine
MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.
MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (36)
- Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
- Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
- Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
- Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
- Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
- MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
- Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
- Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
- Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
- Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
- Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
- Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
- Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
- Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
- "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
- Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
- Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
- Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
- (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
- (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
- (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
- (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
- (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
- (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
- Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
- (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
- (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
- Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
- Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
- (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
- (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Drug and food interactions
acetaminophen food
Applies to: acetaminophen / dextromethorphan / diphenhydramine
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
dextromethorphan food
Applies to: acetaminophen / dextromethorphan / diphenhydramine
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
diphenhydrAMINE food
Applies to: acetaminophen / dextromethorphan / diphenhydramine
GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.
MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.
References (1)
- Linnoila M (1973) "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol, 6, p. 107-12
acetaminophen food
Applies to: acetaminophen / dextromethorphan / diphenhydramine
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.