Skip to main content

Drug Interactions between acetaminophen / chlorpheniramine / pseudoephedrine and Caltrate 600 with Iron and Vitamin D

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

calcium carbonate ferrous fumarate

Applies to: Caltrate 600 with Iron and Vitamin D (calcium / ferrous fumarate / vitamin d) and Caltrate 600 with Iron and Vitamin D (calcium / ferrous fumarate / vitamin d)

ADJUST DOSING INTERVAL: The bioavailability of orally administered iron may be reduced by concomitant administration of antacids or other agents with acid-neutralizing effects. The exact mechanism is unknown but may involve reduced iron solubility due to increase in gastric pH and/or reduced absorption due to complexation or precipitation of the iron. Based on existing data, sodium bicarbonate and calcium carbonate appear to have greater effects than antacids containing magnesium and aluminum hydroxides. In a study of patients with mild iron deficiency anemia, coadministration of ferrous sulfate with sodium bicarbonate 1 gram and calcium carbonate 500 mg reduced iron absorption by 50% and 67%, respectively, while 5 mL of an antacid containing magnesium and aluminum hydroxides had little effect. Another study also found no effect on iron absorption when ferrous sulfate (equivalent to 10 mg/kg of elemental iron) was coadministered with magnesium hydroxide (1 mg for every 5 mg of elemental iron ingested) in a group of healthy, fasting male subjects. In contrast, absorption of iron from ferrous sulfate and ferrous fumarate tablets was reduced by 37% and 31%, respectively, following administration of an antacid containing magnesium carbonate, magnesium hydroxide, and aluminum hydroxide in a study of healthy, iron-replete volunteers. Similarly, in a study of nine patients, coadministration of 5 mg of ferrous sulfate with a 35 gram dose of magnesium trisilicate was found to reduce iron absorption by an average of more than 70%. The interaction reportedly does not occur in the presence of ascorbic acid, which may competitively bind with iron and prevent the interference with iron absorption.

MANAGEMENT: To minimize the potential for interaction, it may be appropriate to administer oral iron preparations at least two hours apart from antacids or other agents with acid-neutralizing effects.

References (12)
  1. O'Neil-Cutting MA, Crosby WH (1986) "The effect of antacids on the absorption of simultaneously ingested iron." JAMA, 255, p. 1468-70
  2. Hall GJ, Davis AE (1969) "Inhibition of iron absorption by magnesium trisilicate." Med J Aust, 2, p. 95-6
  3. Coste JF, de Bari VA, Keil LB, Needle MA (1977) "In-vitro interactions of oral hematinics." Curr Ther Res Clin Exp, 22, p. 205-15
  4. Corby DG, McCullen AH, Chadwick EW, Decker WJ "Effect of orally administered magnesium hydroxide in experimental iron intoxication." J Toxicol Clin Toxicol, 23, p. 489-99
  5. Gugler R, Allgayer H (1990) "Effects of antacids on the clinical pharmacokinetics of drugs. An update." Clin Pharmacokinet, 18, p. 210-9
  6. Rastogi SP, Padilla F, Boyd CM (1975) "Effect of aluminum hydroxide on iron absorption." Kidney Int, 8, p. 417
  7. Ekenved G, Halvorsen L, Solvell L (1976) "Influence of a liquid antacid on the absorption of different iron salts." Scand J Haematol, Suppl 28, p. 65-77
  8. Coste JF, De Barbi VA, Keil LB, Needle MA (1977) "In-vitro interactions of oral hemantics and antacid suspensions." Curr Ther Res Clin Exp, 22, p. 205-16
  9. Snyder BK, Clark RF (1999) "Effect of magnesium hydroxide administration on iron absorption after a supratherapeutic dose of ferrous sulfate in human volunteers: A randomized controlled trial." Ann Emerg Med, 33, p. 400-5
  10. Wallace KL, Curry SC, LoVecchio F, Raschke R (1999) "Effect of magnesium hydroxide on iron absorption after ferrous sulfate." Ann Emerg Med, 34, p. 685-6
  11. Pruchnicki MC, Coyle JD, Hoshaw-Woodard S, Bay WH (2002) "Effect of phosphate binders on supplemental iron absorption in healthy subjects." J Clin Pharmacol, 42, p. 1171-6
  12. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories

Drug and food interactions

Major

acetaminophen food

Applies to: acetaminophen / chlorpheniramine / pseudoephedrine

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References (12)
  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
  4. Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
  6. Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
  7. Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
  8. (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
  9. Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
  10. Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  11. Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  12. Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
Moderate

chlorpheniramine food

Applies to: acetaminophen / chlorpheniramine / pseudoephedrine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (4)
  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Moderate

calcium carbonate food

Applies to: Caltrate 600 with Iron and Vitamin D (calcium / ferrous fumarate / vitamin d)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References (6)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
Moderate

cholecalciferol food

Applies to: Caltrate 600 with Iron and Vitamin D (calcium / ferrous fumarate / vitamin d)

MONITOR: Additive effects and possible toxicity (e.g., hypercalcemia, hypercalciuria, and/or hyperphosphatemia) may occur when patients using vitamin D and/or vitamin D analogs ingest a diet high in vitamin D, calcium, and/or phosphorus. The biologically active forms of vitamin D stimulate intestinal absorption of calcium and phosphorus. This may be helpful in patients with hypocalcemia and/or hypophosphatemia. However, sudden increases in calcium or phosphorus consumption due to dietary changes could precipitate hypercalcemia and/or hyperphosphatemia. Patients with certain disease states, such as impaired renal function, may be more susceptible to toxic side effects like ectopic calcification. On the other hand, if dietary calcium is inadequate for the body's needs, the active form of vitamin D will stimulate osteoclasts to pull calcium from the bones. This may be detrimental in a patient with reduced bone density.

MANAGEMENT: Given the narrow therapeutic index of vitamin D and vitamin D analogs, the amounts of calcium, phosphorus, and vitamin D present in the patient's diet may need to be taken into consideration. Specific dietary guidance should be discussed with the patient and regular lab work should be monitored as indicated. Calcium, phosphorus, and vitamin D levels should be kept within the desired ranges, which may differ depending on the patient's condition. Patients should also be counseled on the signs and symptoms of hypervitaminosis D, hypercalcemia, and/or hyperphosphatemia.

References (10)
  1. (2023) "Product Information. Drisdol (ergocalciferol)." Validus Pharmaceuticals LLC
  2. (2024) "Product Information. Fultium-D3 (colecalciferol)." Internis Pharmaceuticals Ltd
  3. (2024) "Product Information. Ostelin Specialist Range Vitamin D (colecalciferol)." Sanofi-Aventis Healthcare Pty Ltd T/A Sanofi Consumer Healthcare
  4. (2021) "Product Information. Rocaltrol (calcitriol)." Atnahs Pharma UK Ltd
  5. (2019) "Product Information. Calcitriol (calcitriol)." Strides Pharma Inc.
  6. (2024) "Product Information. Calcitriol (GenRx) (calcitriol)." Apotex Pty Ltd
  7. (2022) "Product Information. Ergocalciferol (ergocalciferol)." RPH Pharmaceuticals AB
  8. (2020) "Product Information. Sandoz D (cholecalciferol)." Sandoz Canada Incorporated
  9. Fischer V, Haffner-Luntzer M, Prystaz K, et al. (2024) Calcium and vitamin-D deficiency marginally impairs fracture healing but aggravates posttraumatic bone loss in osteoporotic mice. https://www.nature.com/articles/s41598-017-07511-2
  10. National Institutes of Health Office of Dietary Supplements (2024) Vitamin D https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#h37
Moderate

ferrous fumarate food

Applies to: Caltrate 600 with Iron and Vitamin D (calcium / ferrous fumarate / vitamin d)

ADJUST DOSING INTERVAL: Concomitant use of some oral medications may reduce the bioavailability of orally administered iron, and vice versa.

Food taken in conjunction with oral iron supplements may reduce the bioavailability of the iron. However, in many patients intolerable gastrointestinal side effects occur necessitating administration with food.

MANAGEMENT: Ideally, iron products should be taken on an empty stomach (i.e., at least 1 hour before or 2 hours after meals), but if this is not possible, administer with meals and monitor the patient more closely for a subtherapeutic effect. Some studies suggest administration of iron with ascorbic acid may enhance bioavailability. In addition, administration of oral iron products and some oral medications should be separated whenever the bioavailability of either agent may be decreased. Consult the product labeling for specific separation times and monitor clinical responses as appropriate.

References (2)
  1. "Product Information. Feosol (ferrous sulfate)." SmithKline Beecham
  2. (2021) "Product Information. Accrufer (ferric maltol)." Shield Therapeutics
Moderate

pseudoephedrine food

Applies to: acetaminophen / chlorpheniramine / pseudoephedrine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References (7)
  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Moderate

acetaminophen food

Applies to: acetaminophen / chlorpheniramine / pseudoephedrine

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.