Drug Interactions between acetaminophen / butalbital / caffeine and gepirone
This report displays the potential drug interactions for the following 2 drugs:
- acetaminophen/butalbital/caffeine
- gepirone
Interactions between your drugs
acetaminophen butalbital
Applies to: acetaminophen / butalbital / caffeine and acetaminophen / butalbital / caffeine
MONITOR: Barbiturates may increase the hepatotoxic potential of acetaminophen and decrease its therapeutic effects. The mechanism may be related to accelerated CYP450 metabolism of acetaminophen with consequent increase in hepatotoxic metabolites. This interaction is of greatest concern in cases of acetaminophen overdose.
MANAGEMENT: Monitoring for altered efficacy and safety is recommended. Prolonged use or high doses of acetaminophen should be avoided by patients on barbiturate therapy.
References (4)
- Pirotte JH (1984) "Apparent potentiation by phenobarbital of hepatotoxicity from small doses of acetaminophen." Ann Intern Med, 101, p. 403
- Douidar SM, Ahmed AE (1987) "A novel mechanism for the enhancement of acetaminophen hepatotoxicity by phenobarbital." J Pharmacol Exp Ther, 240, p. 578-83
- Wright N, Prescott LF (1973) "Potentiation by previous drug therapy of hepatotoxicity following paracetamol overdose." Scott Med J, 18, p. 56-8
- Bock KW, Wiltfang J, Blume R, Ullrich D, Bircher J (1987) "Paracetamol as a test drug to determine glucuronide formation in man: effects of inducers and of smoking." Eur J Clin Pharmacol, 31, p. 677-83
butalbital gepirone
Applies to: acetaminophen / butalbital / caffeine and gepirone
MONITOR: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentration and effects of gepirone, which is primarily metabolized by the isoenzyme. In 24 study subjects, administration of gepirone (20 mg for 2 days, then 40 mg daily) with the potent CYP450 3A4 inducer rifampin (600 mg daily) decreased the maximum plasma concentration (Cmax) and the systemic exposure (AUC) of gepirone by approximately 20- and 29-fold, respectively. The Cmax and AUC of one of gepirone's active metabolites, 3'-OH gepirone, were decreased by approximately 2.5- and 3-fold, respectively. There was no effect on the pharmacokinetics of the other active metabolite, 1-PP. Clinical data exploring the use of gepirone with less potent CYP450 3A4 inducers are not available.
MANAGEMENT: Caution is advised during concomitant use of gepirone with drugs that are CYP450 3A4 inducers. The possibility of diminished therapeutic effects should be considered.
References (1)
- (2023) "Product Information. Exxua (gepirone)." Mission Pharmacal Company, 1
Drug and food interactions
acetaminophen food
Applies to: acetaminophen / butalbital / caffeine
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
butalbital food
Applies to: acetaminophen / butalbital / caffeine
GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.
MANAGEMENT: The combination of ethanol and barbiturates should be avoided.
References (5)
- Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
- Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
- Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
- Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
- Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
gepirone food
Applies to: gepirone
GENERALLY AVOID: Grapefruit and/or grapefruit juice may increase the plasma concentrations and effects of gepirone. The proposed mechanism is inhibition of CYP450 3A4 mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. For example, when subjects who were at steady state on the strong CYP450 3A4 inhibitor ketoconazole (200 mg twice daily) received a single dose of gepirone (36.3 mg), the maximum plasma concentration (Cmax) and systemic exposure (AUC) of gepirone increased by approximately 5-fold. Similarly, when subjects who were at steady state on the moderate CYP450 3A4 inhibitor verapamil (80 mg three times daily) received a single dose of gepirone (18.2 mg), the maximum plasma concentration (Cmax) and systemic exposure (AUC) of gepirone increased by approximately 2.6-fold. In general, the effects of grapefruit products are concentration-, dose-, and preparation-dependent and can vary widely among both brands and individual patients. Some preparations have demonstrated strong CYP450 3A4 inhibition, while others have demonstrated moderate inhibition.
ADJUST DOSING INTERVAL: Food enhances the bioavailability of gepirone and its major active metabolites (3'-OH-gepirone and 1-PP). The magnitude of the effect is dependent on the fat content of the meal, but the systemic exposure of gepirone and its major metabolites was consistently higher under fed conditions as compared to the fasted state. The peak plasma concentration (Cmax) of gepirone after intake of a low-fat (about 200 calorie) breakfast was 27% higher, after a medium-fat (about 500 calorie) breakfast was 55% higher, and after a high-fat (about 850 calorie) breakfast was 62% higher than the Cmax achieved in the fasted state. Likewise, the systemic exposure (AUC) of gepirone was about 14% higher after a low-fat breakfast, 22% higher after a medium-fat breakfast, and 32% to 37% higher after a high-fat breakfast when compared to the AUC achieved in the fasted state. The effect of varying amounts of fat on the AUC and Cmax of 3'-OH-gepirone and 1-PP were similar to that of gepirone.
MANAGEMENT: Coadministration of gepirone with grapefruit products should be avoided. If grapefruit juice is consumed, monitoring for adverse effects (e.g., QT prolongation, serotonin syndrome, dizziness, nausea, insomnia, abdominal pain, and/or dyspepsia) should be considered. Gepirone should be taken orally with food at the approximately the same time each day. Tablets should be swallowed whole.
References (4)
- (2023) "Product Information. Exxua (gepirone)." Mission Pharmacal Company, 1
- FDA. U.S. Food and Drug Administration (2024) Grapefruit juice and some drugs don't mix. https://www.fda.gov/consumers/consumer-updates/grapefruit-juice-and-some-drugs-dont-mix
- Chen M, Zhou S, Fabriaga E, Zhang P, Zhou Q (2024) Food-drug interactions precipitated by fruit juices other than grapefruit juice: an update review. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326888/
- Kiani J, Imam SZ (2024) Medicinal importance of grapefruit juice and its interaction with various drugs. https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-6-33
acetaminophen food
Applies to: acetaminophen / butalbital / caffeine
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
caffeine food
Applies to: acetaminophen / butalbital / caffeine
The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.
References (2)
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.