Skip to main content

Drug Interactions between acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide and Metoprolol Succinate ER

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

aspirin aluminum hydroxide

Applies to: acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide and acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis 11 (1988): 338-42
  3. Furst DE "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl 17 (1988): 58-62
  4. Miners JO "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet 17 (1989): 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med 293 (1975): 323-5
  6. Shastri RA "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol 23 (1985): 480-4
  7. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  8. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
  9. "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC. (2023):
View all 9 references

Switch to consumer interaction data

Moderate

aspirin magnesium hydroxide

Applies to: acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide and acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis 11 (1988): 338-42
  3. Furst DE "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl 17 (1988): 58-62
  4. Miners JO "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet 17 (1989): 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med 293 (1975): 323-5
  6. Shastri RA "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol 23 (1985): 480-4
  7. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  8. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
  9. "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC. (2023):
View all 9 references

Switch to consumer interaction data

Minor

metoprolol aspirin

Applies to: Metoprolol Succinate ER (metoprolol) and acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

High doses of salicylates may blunt the antihypertensive effects of beta-blockers. The proposed mechanism is inhibition of prostaglandin synthesis. Low-dose aspirin does not appear to affect blood pressure. In addition, beta-blockers may exert an antiplatelet effect, which may be additive with the effects of some salicylates. Metoprolol may also increase aspirin absorption and/or plasma concentrations of salicylates; however, the clinical significance of this effect is unknown. Data have been conflicting. Until more information is available, patients who require concomitant therapy should be monitored for altered antihypertensive response whenever a salicylate is introduced or discontinued, or when its dosage is modified.

References

  1. Spahn H, Langguth P, Kirch W, et al. "Pharmacokinetics of salicylates administered with metoprolol." Arzneimittelforschung 36 (1986): 1697-9
  2. Sziegoleit W, Rausch J, Polak G, et al. "Influence of acetylsalicylic acid on acute circulatory effects of the beta-blocking agents pindolol and propranolol in humans." Int J Clin Pharmacol Ther Toxicol 20 (1982): 423-30
  3. Keber I, Jerse M, Keber D, Stegnar M "The influence of combined treatment with propranolol and acetylsalicylic acid on platelet aggregation in coronary heart disease." Br J Clin Pharmacol 7 (1979): 287-91
  4. Sziegoleit W, Rausch J, Polak G, Gyorgy M, Dekov E, Bekes M "Influence of acetylsalicylic acid on acute circulatory effects of the beta-blocking agents pindolol and propranolol." Int J Clin Pharmacol Ther Toxicol 20 (1982): 423-30
  5. Hartmann D, Stief G, Lingenfelder M, Guzelhan C, Horsch AK "Study on the possible interaction between tenoxicam and atenolol in hypertensive patients." Arzneimittelforschung 45-1 (1995): 494-8
  6. Zanchetti A, Hansson L, Leonetti G, et al. "Low-dose aspirin does not interfere with the blood pressure-lowering effects of antihypertensive therapy." J Hypertens 20 (2002): 1015-1022
View all 6 references

Switch to consumer interaction data

Minor

aspirin caffeine

Applies to: acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide and acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet 11 (1986): 71-6

Switch to consumer interaction data

Minor

metoprolol aluminum hydroxide

Applies to: Metoprolol Succinate ER (metoprolol) and acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

Concurrent administration with aluminum and magnesium antacids has been shown to decrease the oral bioavailability of certain beta-blockers, although data are conflicting. The exact mechanism of interaction is unknown but may involve cation binding of beta-blockers or a reduction in the dissolution rate due to increased gastric pH. In six healthy volunteers, concomitant administration of a single dose of antacid (magnesium hydroxide-aluminum oxide 1200 mg-1800 mg) reduced the peak plasma concentration (Cmax), area under the concentration-time curve (AUC) and 24-hour urinary excretion of sotalol (160 mg) by 27%, 21% and 9%, respectively, while administration of the antacid 2 hours after the sotalol dose produced no change. Pharmacodynamic data suggest that the negative chronotropic effect of sotalol was also reduced up to 4 hours after administration of the combination, although the lack of a placebo control might have confounded the results. In another study, concomitant administration of an aluminum hydroxide antacid in six healthy volunteers decreased atenolol (100 mg) Cmax and AUC by 37% and 33%, respectively. However, the Cmax and AUC of metoprolol (100 mg) in the same group was increased 25% and 11%, respectively, by administration of the antacid. Two other studies with aluminum hydroxide failed to find a significant effect on pharmacokinetics or pharmacodynamics of atenolol and propranolol. Based on available data, the clinical significance of this potential interaction is difficult to determine. As a precaution, patients may want to consider separating the administration times of beta-blockers and antacids or other aluminum- or magnesium-containing products by at least 2 hours.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther 30 (1981): 429-35
  2. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  3. Hong CY, Hu SC, Lin SJ, Chiang BN "Lack of influence of aluminum hydroxide on the bioavailability and beta-adrenoceptor blocking activity of propranolol." Int J Clin Pharmacol Ther Toxicol 23 (1985): 244-6
  4. Dobbs JH, Skoutakis VA, Acchiardo SR, Dobbs BR "Effects of aluminum hydroxide on the absorption of propranolol." Curr Ther Res Clin Exp 21 (1977): 887-92
  5. Regardh CG, Lundborg P, Persson BA "The effect of antacid, metoclopramide, and propantheline on the bioavailability of metoprolol and atenolol." Biopharm Drug Dispos 2 (1981): 79-87
  6. Gugler R, Allgayer H "Effects of antacids on the clinical pharmacokinetics of drugs. An update." Clin Pharmacokinet 18 (1990): 210-9
  7. Laer S, Neumann J, Scholz H "Interaction between sotalol and an antacid preparation." Br J Clin Pharmacol 43 (1997): 269-72
View all 7 references

Switch to consumer interaction data

Minor

metoprolol magnesium hydroxide

Applies to: Metoprolol Succinate ER (metoprolol) and acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

Concurrent administration with aluminum and magnesium antacids has been shown to decrease the oral bioavailability of certain beta-blockers, although data are conflicting. The exact mechanism of interaction is unknown but may involve cation binding of beta-blockers or a reduction in the dissolution rate due to increased gastric pH. In six healthy volunteers, concomitant administration of a single dose of antacid (magnesium hydroxide-aluminum oxide 1200 mg-1800 mg) reduced the peak plasma concentration (Cmax), area under the concentration-time curve (AUC) and 24-hour urinary excretion of sotalol (160 mg) by 27%, 21% and 9%, respectively, while administration of the antacid 2 hours after the sotalol dose produced no change. Pharmacodynamic data suggest that the negative chronotropic effect of sotalol was also reduced up to 4 hours after administration of the combination, although the lack of a placebo control might have confounded the results. In another study, concomitant administration of an aluminum hydroxide antacid in six healthy volunteers decreased atenolol (100 mg) Cmax and AUC by 37% and 33%, respectively. However, the Cmax and AUC of metoprolol (100 mg) in the same group was increased 25% and 11%, respectively, by administration of the antacid. Two other studies with aluminum hydroxide failed to find a significant effect on pharmacokinetics or pharmacodynamics of atenolol and propranolol. Based on available data, the clinical significance of this potential interaction is difficult to determine. As a precaution, patients may want to consider separating the administration times of beta-blockers and antacids or other aluminum- or magnesium-containing products by at least 2 hours.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther 30 (1981): 429-35
  2. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  3. Hong CY, Hu SC, Lin SJ, Chiang BN "Lack of influence of aluminum hydroxide on the bioavailability and beta-adrenoceptor blocking activity of propranolol." Int J Clin Pharmacol Ther Toxicol 23 (1985): 244-6
  4. Dobbs JH, Skoutakis VA, Acchiardo SR, Dobbs BR "Effects of aluminum hydroxide on the absorption of propranolol." Curr Ther Res Clin Exp 21 (1977): 887-92
  5. Regardh CG, Lundborg P, Persson BA "The effect of antacid, metoclopramide, and propantheline on the bioavailability of metoprolol and atenolol." Biopharm Drug Dispos 2 (1981): 79-87
  6. Gugler R, Allgayer H "Effects of antacids on the clinical pharmacokinetics of drugs. An update." Clin Pharmacokinet 18 (1990): 210-9
  7. Laer S, Neumann J, Scholz H "Interaction between sotalol and an antacid preparation." Br J Clin Pharmacol 43 (1997): 269-72
View all 7 references

Switch to consumer interaction data

Drug and food interactions

Major

aluminum hydroxide food

Applies to: acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

GENERALLY AVOID: The concomitant administration of aluminum-containing products (e.g., antacids and phosphate binders) and citrates may significantly increase serum aluminum concentrations, resulting in toxicity. Citrates or citric acid are contained in numerous soft drinks, citrus fruits, juices, and effervescent and dispersible drug formulations. Citrates enhance the gastrointestinal absorption of aluminum by an unknown mechanism, which may involve the formation of a soluble aluminum-citrate complex. Various studies have reported that citrate increases aluminum absorption by 4.6- to 50-fold in healthy subjects. Patients with renal insufficiency are particularly at risk of developing hyperaluminemia and encephalopathy. Fatalities have been reported. Patients with renal failure or on hemodialysis may also be at risk from soft drinks and effervescent and dispersible drug formulations that contain citrates or citric acid. It is unknown what effect citrus fruits or juices would have on aluminum absorption in healthy patients.

MANAGEMENT: The concomitant use of aluminum- and citrate-containing products and foods should be avoided by renally impaired patients. Hemodialysis patients should especially be cautioned about effervescent and dispersible over-the-counter remedies and soft drinks. Some experts also recommend that healthy patients should separate doses of aluminum-containing antacids and citrates by 2 to 3 hours.

ADJUST DOSING INTERVAL: The administration of aluminum-containing antacids with enteral nutrition may result in precipitation, formation of bezoars, and obstruction of feeding tubes. The proposed mechanism is the formation of an insoluble complex between the aluminum and the protein in the enteral feeding. Several cases of esophageal plugs and nasogastric tube obstructions have been reported in patients receiving high-protein liquids and an aluminum hydroxide-magnesium hydroxide antacid or an aluminum hydroxide antacid.

MANAGEMENT: Some experts recommend that antacids should not be mixed with or given after high protein formulations, that the antacid dose should be separated from the feeding by as much as possible, and that the tube should be thoroughly flushed before administration.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm 66 (2009): 1438-67

Switch to consumer interaction data

Major

acetaminophen food

Applies to: acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Moderate

metoprolol food

Applies to: Metoprolol Succinate ER (metoprolol)

ADJUST DOSING INTERVAL: The bioavailability of metoprolol may be enhanced by food.

MANAGEMENT: Patients may be instructed to take metoprolol at the same time each day, preferably with or immediately following meals.

References

  1. "Product Information. Lopressor (metoprolol)." Novartis Pharmaceuticals PROD (2001):
  2. Darcy PF "Nutrient-drug interactions." Adverse Drug React Toxicol Rev 14 (1995): 233-54

Switch to consumer interaction data

Moderate

aspirin food

Applies to: acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn PROD (2002):

Switch to consumer interaction data

Moderate

metoprolol food

Applies to: Metoprolol Succinate ER (metoprolol)

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther 30 (1981): 429-35

Switch to consumer interaction data

Minor

caffeine food

Applies to: acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy 16 (1996): 1046-52

Switch to consumer interaction data

Minor

aspirin food

Applies to: acetaminophen / aluminum hydroxide / aspirin / caffeine / magnesium hydroxide

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet 11 (1986): 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.