Skip to main content

Drug Interactions between AccessPak for HIV PEP Expanded with Kaletra and Flagyl 375

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

metroNIDAZOLE ritonavir

Applies to: Flagyl 375 (metronidazole) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

GENERALLY AVOID: Ritonavir capsules, ritonavir oral solution, lopinavir-ritonavir oral solution, and tipranavir capsules all contain alcohol, which may produce a disulfiram-like reaction when coadministered with drugs that can inhibit aldehyde dehydrogenase (ALDH) such as nitroimidazoles (e.g., metronidazole, tinidazole), nitrofurans (e.g., furazolidone, nifurtimox), and cephalosporins with an N-methylthiotetrazole (NMTT) side chain that structurally resembles disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. The interaction is well established for disulfiram. However, data for other potential ALDH inhibitors such as metronidazole and cephalosporins are limited and conflicting.

MANAGEMENT: Until further information is available, use of ritonavir capsules, ritonavir oral solution, lopinavir-ritonavir oral solution, or tipranavir capsules with nitroimidazoles (including vaginal formulations), nitrofurans, and certain cephalosporins should be avoided if possible.

References

  1. Uri JV, Parks DB "Disulfiram-like reaction to certain cephalosporins." Ther Drug Monit 5 (1983): 219-24
  2. Kline SS, Mauro VF, Forney RB Jr, et al. "Cefotetan-induced disulfiram-type reactions and hypoprothrombinemia." Antimicrob Agents Chemother 31 (1987): 1328-31
  3. Portier H, Chalopin JM, Freysz M, Tanter Y "Interaction between cephalosporins and alcohol." Lancet 08/02/80 (1980): 263
  4. Shimada J, Hayashi Y, Nakamura K "Cefmetazole: clinical evaluation of efficacy and safety in Japan." Drugs Exp Clin Res 11 (1985): 181-94
  5. Freundt KJ, Kitson TM "Inactivation of aldehyde dehydrogenase by a putative metabolite of cefamandole." Infection 14 (1986): 44-7
  6. Freundt KJ, Schreiner E, Christmann-Kleiss U "Cefamandole: a competitive inhibitor of aldehyde dehydrogenase." Infection 13 (1985): 91
  7. McMahon FG "Disulfiram-like reaction to a cephalosporin." JAMA 243 (1980): 2397
  8. Reeves DS, Davies AJ "Antabuse effect with cephalosporins." Lancet 2 (1980): 540
  9. Giannini AJ, DeFrance DT "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol 20 (1983): 509-15
  10. Alexander I "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract 39 (1985): 292-3
  11. Harries DP, Teale KF, Sunderland G "Metronidazole and alcohol: potential problems." Scott Med J 35 (1990): 179-80
  12. Neu HC, Prince AS "Interaction between moxalactam and alcohol." Lancet June (1980): 1422
  13. Brown KR, Guglielmo BJ, Pons VG, Jacobs RA "Theophylline elixir, moxalactam, and a disulfiram reaction." Ann Intern Med 97 (1982): 621-2
  14. Umeda S, Arai T "Disulfiram-like reaction to moxalactam after celiac plexus alcohol block." Anesth Analg 64 (1985): 377
  15. "Product Information. Flagyl (metronidazole)." Searle PROD (2001):
  16. Jones RO "Death following the ingestion of alcohol in an antabuse treated patient." Can Med Assoc J 60 (1949): 609-12
  17. van Ieperen L "Sudden death during disulfiram-ethanol reaction." S Afr Med J 66 (1984): 165
  18. Buening MK, et al. "Disulfiram-like reaction to beta-lactams." JAMA 245 (1981): 2047
  19. Foster TS, Raehl CL, Wilson HD "Disulfiram-like reaction associated with a parenteral cephalosporin." Am J Hosp Pharm 37 (1980): 858-9
  20. Elenbaas RM "Drug therapy reviews: management of the disulfiram-alcohol reaction." Am J Hosp Pharm 34 (1977): 827-31
  21. "Product Information. MetroGel-Vaginal (metroNIDAZOLE topical)." Curatek Pharmaceuticals Ltd (2022):
  22. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):
  23. Cina SJ, Russell RA, Conradi SE "Sudden death due to metronidazole/ethanol interaction." Am J Forensic Med Pathol 17 (1996): 343-6
  24. "Product Information. Furoxone (furazolidone)." Roberts Pharmaceutical Corporation PROD (2001):
  25. Williams CS, Woodcock KR "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother 34 (2000): 255-7
  26. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):
  27. Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother 36 (2002): 971-4
  28. Krulewitch CJ "An unexpected adverse drug effect." J Midwifery Womens Health 48 (2003): 67-8
  29. McMahon FG, Ryan JR, Jain AK, LaCorte W, Ginzler F "Absence of disulfiram-type reactions to single and multiple doses of cefonicid: a placebo-controlled study." J Antimicrob Chemother 20 (1987): 913-8
  30. "Product Information. Tindamax (tinidazole)." Presutti Laboratories Inc (2004):
  31. "Product Information. Aptivus (tipranavir)." Boehringer-Ingelheim (2005):
View all 31 references

Switch to consumer interaction data

Moderate

metroNIDAZOLE lopinavir

Applies to: Flagyl 375 (metronidazole) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: QT prolongation has been reported with metronidazole, particularly when administered with drugs that have the potential for prolonging the QT interval. This may increase the risk of ventricular arrhythmias associated with QT prolongation including torsade de pointes and sudden death. According to the manufacturer, flattening of the T-wave has been observed in electrocardiographic tracings. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Caution is recommended when metronidazole is used concomitantly with agents known to cause QT prolongation. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. "Product Information. Flagyl (metronidazole)." Searle PROD (2001):
  2. Kounas SP, Letsas KP, Sideris A, Efraimidis M, Kardaras F "QT interval prolongation and torsades de pointes due to a coadministration of metronidazole and amiodarone." Pacing Clin Electrophysiol 28 (2005): 472-3
  3. Cerner Multum, Inc. "Australian Product Information." O 0
  4. "Product Information. Pylera (bismuth subcitrate potassium/metronidazo/TCN)." Aptalis Pharma (2022):
View all 4 references

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Major

metroNIDAZOLE food

Applies to: Flagyl 375 (metronidazole)

CONTRAINDICATED: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.

MANAGEMENT: Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction. Consumption of alcoholic beverages and products containing propylene glycol is specifically contraindicated during and for at least 3 days after completion of metronidazole and benznidazole therapy according to their product labeling.

References

  1. Giannini AJ, DeFrance DT "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol 20 (1983): 509-15
  2. Alexander I "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract 39 (1985): 292-3
  3. Harries DP, Teale KF, Sunderland G "Metronidazole and alcohol: potential problems." Scott Med J 35 (1990): 179-80
  4. "Product Information. Flagyl (metronidazole)." Searle PROD (2001):
  5. Edwards DL, Fink PC, Van Dyke PO "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm 5 (1986): 999-1000
  6. Williams CS, Woodcock KR "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother 34 (2000): 255-7
  7. Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother 36 (2002): 971-4
  8. Krulewitch CJ "An unexpected adverse drug effect." J Midwifery Womens Health 48 (2003): 67-8
  9. "Product Information. Benznidazole (benznidazole)." Everett Laboratories Inc (2017):
View all 9 references

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Minor

tenofovir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.