Skip to main content

Drug Interactions between AccessPak for HIV PEP Expanded with Kaletra and EryPed

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

erythromycin ritonavir

Applies to: EryPed (erythromycin) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

GENERALLY AVOID: Coadministration with potent inhibitors of CYP450 3A4 may increase the plasma concentrations of erythromycin, which is primarily metabolized by the isoenzyme. The use of erythromycin has been associated with dose-related prolongation of the QT interval, thus elevated plasma levels of the drug may potentiate the risk of ventricular arrhythmias such as ventricular tachycardia and torsade de pointes. In a population-based retrospective study of 1476 cases of confirmed sudden death from cardiac causes, concurrent use of erythromycin and a CYP450 3A4 inhibitor (mostly verapamil or diltiazem) was associated with a marked increase in the risk of sudden death from cardiac causes as compared to nonuse of CYP450 3A4 inhibitors, erythromycin, or amoxicillin; concurrent use of amoxicillin and CYP450 3A4 inhibitors; use of CYP450 3A4 inhibitors without erythromycin or amoxicillin; and concurrent use of erythromycin and calcium channel blockers that do not significantly inhibit CYP450 3A4 (e.g., nifedipine). In fact, the risk was five times as high as that for nonuse of CYP450 3A4 inhibitors, erythromycin, or amoxicillin. In addition, erythromycin may increase the plasma concentrations of drugs that are substrates of CYP450 3A4.

MANAGEMENT: Concomitant use of erythromycin with potent CYP450 3A4 inhibitors should generally be avoided.

References

  1. Iannini PB "Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval." Expert Opin Drug Saf 1 (2002): 121-8
  2. Ray WA, Murray KT, Meredith S, Narasimhulu SS, Hall K, Stein CM "Oral erythromycin and the risk of sudden death from cardiac causes." N Engl J Med 351 (2004): 1089-96

Switch to consumer interaction data

Moderate

erythromycin lopinavir

Applies to: EryPed (erythromycin) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

GENERALLY AVOID: Lopinavir in combination with ritonavir may cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In a study of 39 healthy adults who were administered lopinavir-ritonavir at a therapeutic dosage of 400 mg-100 mg twice daily and a supratherapeutic dosage of 800 mg-200 mg twice daily, the maximum mean time-matched difference in QTcF interval from placebo (after baseline correction) was 5.3 msec for the lower dosage and 15.2 msec for the supratherapeutic dosage in the 12 hours post-dose on treatment day 3 when exposures were approximately 1.5 and 3-fold higher, respectively, than those observed with recommended once-daily or twice-daily dosages of lopinavir-ritonavir at steady state. No subject experienced an increase in QTcF greater than 60 msec from baseline or a QTcF interval exceeding the potentially clinically relevant threshold of 500 msec. There have been cases of QT interval prolongation and torsade de pointes arrhythmia during postmarketing use of lopinavir-ritonavir, although causality could not be established. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Coadministration of lopinavir-ritonavir with other drugs that can prolong the QT interval should generally be avoided. Patients treated with any medication that can cause QT prolongation should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):
  2. Anson BD, Weaver JG, Ackerman MJ, et al. "Blockade of HERG channels by HIV protease inhibitors." Lancet 365 (2005): 682-686
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  4. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
  5. Cerner Multum, Inc. "Australian Product Information." O 0
View all 5 references

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

erythromycin food

Applies to: EryPed (erythromycin)

ADJUST DOSING INTERVAL: Food may variably affect the bioavailability of different oral formulations and salt forms of erythromycin. The individual product package labeling should be consulted regarding the appropriate time of administration in relation to food ingestion. Grapefruit juice may increase the plasma concentrations of orally administered erythromycin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In an open-label, crossover study consisting of six healthy subjects, the coadministration with double-strength grapefruit juice increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of a single dose of erythromycin (400 mg) by 52% and 49%, respectively, compared to water. The half-life was not affected. The clinical significance of this potential interaction is unknown.

MANAGEMENT: In general, optimal serum levels are achieved when erythromycin is taken in the fasting state, one-half to two hours before meals. However, some erythromycin products may be taken without regard to meals.

References

  1. Welling PG, Huang H, Hewitt PF, Lyons LL "Bioavailability of erythromycin stearate: influence of food and fluid volume." J Pharm Sci 67 (1978): 764-6
  2. Welling PG, Elliott RL, Pitterle ME, et al. "Plasma levels following single and repeated doses of erythromycin estolate and erythromycin stearate." J Pharm Sci 68 (1979): 150-5
  3. Welling PG "Influence of food and diet on gastrointestinal drug absorption: a review." J Pharmacokinet Biopharm 5 (1977): 291-334
  4. Coyne TC, Shum S, Chun AH, Jeansonne L, Shirkey HC "Bioavailability of erythromycin ethylsuccinate in pediatric patients." J Clin Pharmacol 18 (1978): 194-202
  5. Malmborg AS "Effect of food on absorption of erythromycin. A study of two derivatives, the stearate and the base." J Antimicrob Chemother 5 (1979): 591-9
  6. Randinitis EJ, Sedman AJ, Welling PG, Kinkel AW "Effect of a high-fat meal on the bioavailability of a polymer-coated erythromycin particle tablet formulation." J Clin Pharmacol 29 (1989): 79-84
  7. Kanazawa S, Ohkubo T, Sugawara K "The effects of grapefruit juice on the pharmacokinetics of erythromycin." Eur J Clin Pharmacol 56 (2001): 799-803
View all 7 references

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Minor

tenofovir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):

Switch to consumer interaction data

Minor

erythromycin food

Applies to: EryPed (erythromycin)

Ethanol, when combined with erythromycin, may delay absorption and therefore the clinical effects of the antibiotic. The mechanism appears to be due to slowed gastric emptying by ethanol. Data is available only for erythromycin ethylsuccinate. Patients should be advised to avoid ethanol while taking erythromycin salts.

References

  1. Morasso MI, Chavez J, Gai MN, Arancibia A "Influence of alcohol consumption on erythromycin ethylsuccinate kinetics." Int J Clin Pharmacol 28 (1990): 426-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.