Skip to main content

Drug Interactions between acalabrutinib and itraconazole

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

itraconazole acalabrutinib

Applies to: itraconazole and acalabrutinib

GENERALLY AVOID: Coadministration with potent inhibitors of CYP450 3A4 may significantly increase the plasma concentrations of acalabrutinib, which is primarily metabolized by CYP450 3A enzymes to form its active metabolite, ACP-5862. In some instances, inhibition of P-glycoprotein (P-gp) may also contribute, as both acalabrutinib and ACP-5862 have been shown in vitro to be substrates of the efflux transporter. When acalabrutinib was administered with the potent CYP450 3A4 and P-gp inhibitor itraconazole (200 mg once daily for 5 days) in 17 healthy subjects, acalabrutinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 3.9- and 5.1-fold, respectively. Increased acalabrutinib exposure may potentiate the risk of toxicities such as hemorrhage, infection, cytopenias, malignancies, and atrial fibrillation or flutter.

MANAGEMENT: Concomitant use of acalabrutinib with potent CYP450 3A4 inhibitors should generally be avoided, particularly those that are intended for chronic administration. Alternative agents with no or minimal CYP450 3A4 inhibitory potential are recommended whenever possible. If no alternatives exist and the CYP450 3A4 inhibitor is used short-term for 7 days or less, consider interrupting or delaying initiation of acalabrutinib treatment until therapy with the inhibitor is complete. If treatment is interrupted, the patient's previous dosage may be resumed after the strong inhibitor has been discontinued for at least 24 hours.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
  5. Podoll T, Pearson PG, Kaptein A, et al. (2023) "Identification and characterization of ACP-5862, the major circulating active metabolite of acalabrutinib: both are potent and selective covalent bruton tyrosine kinase inhibitors" J Pharmacol Exp Ther, 384, p. 173-86
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Major

acalabrutinib food

Applies to: acalabrutinib

GENERALLY AVOID: Consumption of grapefruit and/or grapefruit juice may increase the plasma concentrations of acalabrutinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice specifically, but has been reported for other CYP450 3A4 inhibitors. When acalabrutinib was administered with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily for 5 days) in 17 healthy subjects, acalabrutinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 3.9- and 5.1-fold, respectively. Physiologically based pharmacokinetic (PBPK) simulations showed that moderate CYP450 3A4 inhibitors (erythromycin, fluconazole, diltiazem) increased acalabrutinib Cmax and AUC by 2- to nearly 3-fold. In healthy subjects, administration of acalabrutinib with the moderate CYP450 3A4 inhibitors fluconazole (400 mg as a single dose) or isavuconazole (200 mg as a repeated dose for 5 days) increased acalabrutinib Cmax and AUC by 1.4- to 2-fold, while the Cmax and AUC of the active metabolite, ACP-5862, was decreased by 0.65- to 0.88-fold. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased acalabrutinib exposure may potentiate the risk of toxicities such as hemorrhage, infection, cytopenias, malignancies, and atrial fibrillation or flutter.

Food may delay the absorption of acalabrutinib, but does not appear to affect the overall extent of absorption. When a single 100 mg tablet or a 75 mg developmental formulation of acalabrutinib was administered with a high-fat, high-calorie meal (approximately 918 calories; 59 grams carbohydrate, 59 grams fat, 39 grams protein) in healthy study subjects, mean acalabrutinib Cmax was decreased by 54% and 73%, respectively, while time to reach Cmax was delayed by 1 to 2 hours compared to administration under fasted conditions. However, mean AUC was not affected.

MANAGEMENT: Acalabrutinib may be administered with or without food. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with acalabrutinib.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
  5. Chen B, Zhou D, Wei H, et al. (2022) "Acalabrutinib CYP3A-mediated drug-drug interactions: clinical evaluations and physiologically based pharmacokinetic modelling to inform dose adjustment strategy" Br J Clin Pharmacol, 88, p. 3716-29
View all 5 references

Switch to consumer interaction data

Moderate

itraconazole food

Applies to: itraconazole

ADJUST DOSING INTERVAL: Food increases the absorption of itraconazole capsules but decreases the absorption of itraconazole oral solution. Cola beverages may increase the bioavailability of itraconazole capsules. Itraconazole capsules require an acidic gastric pH for adequate dissolution and subsequent absorption. Cola beverages help lower gastric pH and improve absorption.

GENERALLY AVOID: Grapefruit juice may impair the absorption of itraconazole capsules, resulting in decreased antifungal effects. In a small, randomized, crossover study, the administration of itraconazole capsules with double-strength grapefruit juice (compared to water) was associated with significantly decreased (43%) plasma concentrations of itraconazole and its pharmacologically active hydroxy metabolite, as well as delayed times to reach peak concentrations of both. The exact mechanism of interaction is unknown but may involve reduced absorption of itraconazole secondary to enhanced activity of intestinal P-glycoprotein drug efflux pumps and delayed gastric emptying induced by certain compounds present in grapefruits. Another study reported no pharmacokinetic changes with single-strength grapefruit juice. Whether or not these observations apply to itraconazole oral solution is unknown.

MANAGEMENT: The manufacturer recommends that the capsules be taken immediately after a full meal and the solution be taken on an empty stomach to ensure maximal absorption. Cola beverages may help increase the bioavailability of itraconazole capsules, particularly in patients with hypochlorhydria or those treated concomitantly with gastric acid suppressants. Until more information is available, it may be advisable to avoid the consumption of grapefruits and grapefruit juice during itraconazole therapy.

References

  1. Van Peer A, Woestenborghs R, Heykants J, et al. (1989) "The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects." Eur J Clin Pharmacol, 36, p. 423-6
  2. Wishart JM (1987) "The influence of food on the pharmacokinetics of itraconazole in patients with superficial fungal infection." J Am Acad Dermatol, 17, p. 220-3
  3. (2002) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  4. Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, Gaffar MC, Moskovitz BL, Mechlinski W, Van de Velde V (1993) "Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers." Antimicrob Agents Chemother, 37, p. 778-84
  5. Zimmermann T, Yeates RA, Albrecht M, Laufen H, Wildfeuer A (1994) "Influence of concomitant food intake on the gastrointestinal absorption of fluconazole and itraconazole in japanese subjects." Int J Clin Pharmacol Res, 14, p. 87-93
  6. (2022) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  7. Kawakami M, Suzuki K, Ishizuka T, Hidaka T, Matsuki Y, Nakamura H (1998) "Effect of grapefruit juice on pharmacokinetics of itraconazole in healthy subjects." Int J Clin Pharmacol Ther, 36, p. 306-8
  8. Barone JA, Moskotitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L (1998) "Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers." Pharmacotherapy, 18, p. 295-301
  9. Penzak SR, Gubbins PO, Gurley BJ, Wang PL, Saccente M (1999) "Grapefruit juice decreases the systemic availability of itraconazole capsules in healthy volunteers." Ther Drug Monit, 21, p. 304-9
  10. Katz HI (1999) "Drug interactions of the newer oral antifungal agents." Br J Dermatol, 141, p. 26-32
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.