Skip to main content

Drug Interactions between acalabrutinib and Dual Action Complete

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

famotidine acalabrutinib

Applies to: Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide) and acalabrutinib

ADJUST DOSING INTERVAL: Coadministration of acalabrutinib in its capsule formulation with drugs that increase gastric pH may significantly decrease the oral bioavailability of acalabrutinib and reduce its concentrations in plasma. The solubility of acalabrutinib is pH-dependent and decreases with increasing pH. According to the product labeling, acalabrutinib is freely soluble in water at pH below 3 and practically insoluble at pH above 6. Coadministration of acalabrutinib capsules with an antacid (1 gram calcium carbonate) decreased acalabrutinib systemic exposure (AUC) by 53% in healthy subjects, and coadministration with a proton pump inhibitor (omeprazole 40 mg for 5 days) decreased acalabrutinib AUC by 43%. Due to the long-lasting effect of proton pump inhibitors, separation of dosing may not eliminate the interaction with acalabrutinib capsules. By contrast, no clinically significant differences in the pharmacokinetics of acalabrutinib were observed when the tablet formulation, which contains acalabrutinib maleate, was coadministered with the proton pump inhibitor, rabeprazole.

MANAGEMENT: No adjustments to therapy are required when using the tablet formulation containing acalabrutinib maleate. However, if gastric acid reducing agents are required during treatment with acalabrutinib capsules, H2-receptor antagonists and/or antacids should be considered. The manufacturer recommends taking acalabrutinib 2 hours before (or 10 hours after) H2-receptor antagonists and separating the dosing with antacids by at least 2 hours.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Moderate

calcium carbonate acalabrutinib

Applies to: Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide) and acalabrutinib

ADJUST DOSING INTERVAL: Coadministration of acalabrutinib in its capsule formulation with drugs that increase gastric pH may significantly decrease the oral bioavailability of acalabrutinib and reduce its concentrations in plasma. The solubility of acalabrutinib is pH-dependent and decreases with increasing pH. According to the product labeling, acalabrutinib is freely soluble in water at pH below 3 and practically insoluble at pH above 6. Coadministration of acalabrutinib capsules with an antacid (1 gram calcium carbonate) decreased acalabrutinib systemic exposure (AUC) by 53% in healthy subjects, and coadministration with a proton pump inhibitor (omeprazole 40 mg for 5 days) decreased acalabrutinib AUC by 43%. Due to the long-lasting effect of proton pump inhibitors, separation of dosing may not eliminate the interaction with acalabrutinib capsules. By contrast, no clinically significant differences in the pharmacokinetics of acalabrutinib were observed when the tablet formulation, which contains acalabrutinib maleate, was coadministered with the proton pump inhibitor, rabeprazole.

MANAGEMENT: No adjustments to therapy are required when using the tablet formulation containing acalabrutinib maleate. However, if gastric acid reducing agents are required during treatment with acalabrutinib capsules, H2-receptor antagonists and/or antacids should be considered. The manufacturer recommends taking acalabrutinib 2 hours before (or 10 hours after) H2-receptor antagonists and separating the dosing with antacids by at least 2 hours.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Moderate

magnesium hydroxide acalabrutinib

Applies to: Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide) and acalabrutinib

ADJUST DOSING INTERVAL: Coadministration of acalabrutinib in its capsule formulation with drugs that increase gastric pH may significantly decrease the oral bioavailability of acalabrutinib and reduce its concentrations in plasma. The solubility of acalabrutinib is pH-dependent and decreases with increasing pH. According to the product labeling, acalabrutinib is freely soluble in water at pH below 3 and practically insoluble at pH above 6. Coadministration of acalabrutinib capsules with an antacid (1 gram calcium carbonate) decreased acalabrutinib systemic exposure (AUC) by 53% in healthy subjects, and coadministration with a proton pump inhibitor (omeprazole 40 mg for 5 days) decreased acalabrutinib AUC by 43%. Due to the long-lasting effect of proton pump inhibitors, separation of dosing may not eliminate the interaction with acalabrutinib capsules. By contrast, no clinically significant differences in the pharmacokinetics of acalabrutinib were observed when the tablet formulation, which contains acalabrutinib maleate, was coadministered with the proton pump inhibitor, rabeprazole.

MANAGEMENT: No adjustments to therapy are required when using the tablet formulation containing acalabrutinib maleate. However, if gastric acid reducing agents are required during treatment with acalabrutinib capsules, H2-receptor antagonists and/or antacids should be considered. The manufacturer recommends taking acalabrutinib 2 hours before (or 10 hours after) H2-receptor antagonists and separating the dosing with antacids by at least 2 hours.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
View all 4 references

Switch to consumer interaction data

Minor

famotidine calcium carbonate

Applies to: Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide) and Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Minor

famotidine magnesium hydroxide

Applies to: Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide) and Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. (1984) "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy, 4, p. 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. (1984) "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol, 26, p. 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J (1987) "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol, 24, p. 551-3
  4. Bodemar G, Norlander B, Walan A (1979) "Diminished absorption of cimetidine caused by antacids." Lancet, 02/24/79, p. 444-5
  5. Steinberg WM, Lewis JH, Katz DM (1982) "Antacids inhibit absorption of cimetidine." N Engl J Med, 307, p. 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E (1989) "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol, 29, p. 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. (1984) "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci, 29, p. 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J (1986) "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm, 20, p. 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P (1987) "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol, 32, p. 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA (1982) "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J, 285, p. 998-9
  11. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L (1994) "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol, 29, p. 14-9
View all 12 references

Switch to consumer interaction data

Drug and food interactions

Major

acalabrutinib food

Applies to: acalabrutinib

GENERALLY AVOID: Consumption of grapefruit and/or grapefruit juice may increase the plasma concentrations of acalabrutinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice specifically, but has been reported for other CYP450 3A4 inhibitors. When acalabrutinib was administered with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily for 5 days) in 17 healthy subjects, acalabrutinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 3.9- and 5.1-fold, respectively. Physiologically based pharmacokinetic (PBPK) simulations showed that moderate CYP450 3A4 inhibitors (erythromycin, fluconazole, diltiazem) increased acalabrutinib Cmax and AUC by 2- to nearly 3-fold. In healthy subjects, administration of acalabrutinib with the moderate CYP450 3A4 inhibitors fluconazole (400 mg as a single dose) or isavuconazole (200 mg as a repeated dose for 5 days) increased acalabrutinib Cmax and AUC by 1.4- to 2-fold, while the Cmax and AUC of the active metabolite, ACP-5862, was decreased by 0.65- to 0.88-fold. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased acalabrutinib exposure may potentiate the risk of toxicities such as hemorrhage, infection, cytopenias, malignancies, and atrial fibrillation or flutter.

Food may delay the absorption of acalabrutinib, but does not appear to affect the overall extent of absorption. When a single 100 mg tablet or a 75 mg developmental formulation of acalabrutinib was administered with a high-fat, high-calorie meal (approximately 918 calories; 59 grams carbohydrate, 59 grams fat, 39 grams protein) in healthy study subjects, mean acalabrutinib Cmax was decreased by 54% and 73%, respectively, while time to reach Cmax was delayed by 1 to 2 hours compared to administration under fasted conditions. However, mean AUC was not affected.

MANAGEMENT: Acalabrutinib may be administered with or without food. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with acalabrutinib.

References

  1. (2019) "Product Information. Calquence (acalabrutinib)." AstraZeneca Pty Ltd
  2. (2023) "Product Information. Calquence (acalabrutinib)." AstraZeneca Canada Inc
  3. (2021) "Product Information. Calquence (acalabrutinib)." AstraZeneca UK Ltd
  4. (2022) "Product Information. Calquence (acalabrutinib)." Astra-Zeneca Pharmaceuticals
  5. Chen B, Zhou D, Wei H, et al. (2022) "Acalabrutinib CYP3A-mediated drug-drug interactions: clinical evaluations and physiologically based pharmacokinetic modelling to inform dose adjustment strategy" Br J Clin Pharmacol, 88, p. 3716-29
View all 5 references

Switch to consumer interaction data

Moderate

calcium carbonate food

Applies to: Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
View all 6 references

Switch to consumer interaction data

Minor

famotidine food

Applies to: Dual Action Complete (calcium carbonate / famotidine / magnesium hydroxide)

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References

  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM (1990) "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol, 38, p. 165-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.