Skip to main content

Drug Interactions between abiraterone and imipramine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

imipramine abiraterone

Applies to: imipramine and abiraterone

GENERALLY AVOID: Coadministration with abiraterone acetate may increase the plasma concentrations of CYP450 2D6 substrates via inhibition of this isoenzyme. This may increase the risk of adverse reactions for drugs that are metabolized by CYP450 2D6 (e.g., metoprolol, propranolol, desipramine, venlafaxine, haloperidol, risperidone, propafenone, flecainide). When dextromethorphan, a CYP450 2D6 substrate, was given with abiraterone acetate 1,000 mg daily and prednisone 5 mg twice daily, dextromethorphan peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 2.8- and 2.9-fold, respectively, compared to administration alone. Conversely, drugs that utilize CYP450 2D6 to form their active metabolites may have reduced efficacy (e.g., codeine, oxycodone, tramadol).

MANAGEMENT: Concurrent therapy of abiraterone acetate with CYP450 2D6 substrates, particularly those for which minimal changes in concentration could lead to serious toxicities, is not generally recommended. If an alternative treatment cannot be used, a dose adjustment and an increase in monitoring of the CYP450 2D6 substrate should be considered. Consult the prescribing information for more specific recommendations.

References (9)
  1. (2011) "Product Information. Zytiga (abiraterone)." Centocor Inc
  2. (2023) "Product Information. Akeega (abiraterone-niraparib)." Janssen Biotech, Inc.
  3. (2023) "Product Information. Akeega (abiraterone-niraparib)." Janssen Inc
  4. (2021) "Product Information. Zytiga (abiraterone)." Janssen Biotech, Inc.
  5. (2022) "Product Information. Yonsa (abiraterone)." Sun Pharmaceutical Industries
  6. (2023) "Product Information. Apo-Abiraterone (abiraterone)." Apotex Inc
  7. (2021) "Product Information. Zytiga (abiraterone)." Janssen-Cilag Pty Ltd
  8. (2023) "Product Information. Abiraterone (abiraterone)." Wockhardt UK Ltd
  9. (2023) "Product Information. Yonsa Mpred (abiraterone-methylprednisolone)." Sun Pharma ANZ Pty Ltd

Drug and food interactions

Moderate

abiraterone food

Applies to: abiraterone

ADJUST DOSING INTERVAL: Food may significantly increase the oral bioavailability of some formulations of abiraterone acetate. Compared to administration in the fasted state, abiraterone peak plasma concentration (Cmax) and systemic exposure (AUC) were approximately 7- and 5-fold higher, respectively, when a single dose of abiraterone acetate was administered with a low-fat meal (7% fat; 300 calories) and approximately 17- and 10-fold higher, respectively, when it was administered with a high-fat meal (57% fat; 825 calories). Given the normal variation in the content and composition of meals, taking abiraterone acetate with meals has the potential to result in increased and highly variable exposures. The safety of these increased exposures during multiple dosing has not been assessed. However, the abiraterone acetate 125 mg tablet, commonly marketed as Yonsa, was found to have an approximately 6.5-fold higher Cmax and 4.4-fold higher AUC when a single dose of 500 mg (4 tablets) was administered with a high-fat meal (56% - 60% fat, 900 - 1000 calories) compared to overnight fasting in healthy volunteers. These differences were not considered clinically significant for this formulation.

MANAGEMENT: Some formulations of abiraterone acetate must be taken on an empty stomach. No food should be consumed for at least two hours before and one hour after the abiraterone acetate dose. However, the abiraterone acetate 125 mg tablet, commonly marketed as Yonsa, can be taken with or without food. The manufacturer's product labeling should be consulted for specific guidance.

References (9)
  1. (2011) "Product Information. Zytiga (abiraterone)." Centocor Inc
  2. (2023) "Product Information. Akeega (abiraterone-niraparib)." Janssen Biotech, Inc.
  3. (2023) "Product Information. Akeega (abiraterone-niraparib)." Janssen Inc
  4. (2021) "Product Information. Zytiga (abiraterone)." Janssen Biotech, Inc.
  5. (2022) "Product Information. Yonsa (abiraterone)." Sun Pharmaceutical Industries
  6. (2023) "Product Information. Apo-Abiraterone (abiraterone)." Apotex Inc
  7. (2021) "Product Information. Zytiga (abiraterone)." Janssen-Cilag Pty Ltd
  8. (2023) "Product Information. Abiraterone (abiraterone)." Wockhardt UK Ltd
  9. (2023) "Product Information. Yonsa Mpred (abiraterone-methylprednisolone)." Sun Pharma ANZ Pty Ltd
Moderate

imipramine food

Applies to: imipramine

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References (7)
  1. Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
  2. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
Moderate

imipramine food

Applies to: imipramine

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.