Skip to main content

Drug Interactions between abacavir / lamivudine / zidovudine and Nydrazid

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

zidovudine isoniazid

Applies to: abacavir / lamivudine / zidovudine and Nydrazid (isoniazid)

MONITOR: Coadministration of isoniazid (INH) with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of INH's acetylation is genetically determined and generally classified as slow or rapid, with slow acetylators characterized by a relative lack of N-acetyltransferase. While the rate of acetylation does not significantly alter INH's effectiveness, it can lead to higher blood levels of INH and an increase of adverse reactions. In addition, INH is an in vitro inhibitor of several CYP450 isoenzymes (2C9, 2C19, 2E1, and 3A4). Coadministration of hepatotoxic drugs eliminated by one or more of these pathways may lead to elevated concentrations of the concomitant drug and increase the risk of hepatotoxicity. Most of the INH-associated hepatitis cases occur during the first 3 months of treatment, but may occur at any time and have been reported to be severe or even fatal. INH is reported in medical literature to cause clinically apparent acute liver injury with jaundice in 0.5% to 1% and fatality in 0.05% to 0.1% of recipients. A United States Public Health Service Surveillance Study of 13,838 people taking INH reported 8 deaths among 174 cases of hepatitis. Risk factors for INH related liver injury may include: age > 35 years, female gender, postpartum period, daily consumption of alcohol, injection drug user, slow acetylator phenotype, malnutrition, HIV infection, pre-existing liver disease, extra-pulmonary tuberculosis, and concomitant use of hepatotoxic medications. Clinical data have been reported with concurrent use of acetaminophen, alcohol, carbamazepine, phenobarbital, phenytoin, and rifampin.

MANAGEMENT: Coadministration of isoniazid (INH) with other hepatotoxic medications should be done with caution and close clinical monitoring. Some authorities recommend avoiding concurrent use when possible. If coadministration is needed, baseline and monthly liver function testing as well as monthly interviewing of the patient to check for signs and symptoms of adverse effects is recommended. More frequent testing may be advisable in patients at increased risk of INH-associated liver injury. Some manufacturers of INH recommend strongly considering its discontinuation if serum aminotransferase concentrations (AST or SGOT, ALT or SGPT) exceed 3 to 5 times the upper limit of normal. Patients should be counseled to immediately report signs or symptoms consistent with liver damage and notified that prodromal symptoms usually consist of fatigue, weakness, malaise, anorexia, nausea, and/or vomiting. If hepatic damage is suspected, INH should be immediately discontinued as continuation may lead to more severe damage. If hepatitis is attributed to INH in patients with tuberculosis, alternative drugs should be used. However, if INH must be used, it should only be resumed after the patient's symptoms and laboratory abnormalities have cleared. It should also be restarted in very small, gradually increasing doses and immediately withdrawn if there is any indication of recurrent liver involvement. Consultation with product labeling and relevant guidelines is advisable.

References

  1. "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India) 2 (2021):
  2. "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC. (2023):
  3. "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd (2023):
  4. "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB (2023):
  5. Saukkonen JJ, Cohn DL, Jasmer RM, et al. "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med 174 (2006): 935-52
  6. Bouazzi OE, Hammi S, Bourkadi JE, et al. "First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/" (2024):
  7. Metushi I, Uetrecht J, Phillips E "Mechanism of isoniazid-induced hepatotoxicity: then and now." Br J Clin Pharmacol 81 (2016): 1030-6
  8. National Institute of Diabetes and Digestive and Kidney Diseases "LiverTox: clinical and research information on drug-induced liver injury [internet]. Isoniazid. https://www.ncbi.nlm.nih.gov/books/NBK548754/" (2024):
  9. "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc. (2021):
View all 9 references

Switch to consumer interaction data

Moderate

isoniazid lamiVUDine

Applies to: Nydrazid (isoniazid) and abacavir / lamivudine / zidovudine

MONITOR: Coadministration of isoniazid (INH) with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of INH's acetylation is genetically determined and generally classified as slow or rapid, with slow acetylators characterized by a relative lack of N-acetyltransferase. While the rate of acetylation does not significantly alter INH's effectiveness, it can lead to higher blood levels of INH and an increase of adverse reactions. In addition, INH is an in vitro inhibitor of several CYP450 isoenzymes (2C9, 2C19, 2E1, and 3A4). Coadministration of hepatotoxic drugs eliminated by one or more of these pathways may lead to elevated concentrations of the concomitant drug and increase the risk of hepatotoxicity. Most of the INH-associated hepatitis cases occur during the first 3 months of treatment, but may occur at any time and have been reported to be severe or even fatal. INH is reported in medical literature to cause clinically apparent acute liver injury with jaundice in 0.5% to 1% and fatality in 0.05% to 0.1% of recipients. A United States Public Health Service Surveillance Study of 13,838 people taking INH reported 8 deaths among 174 cases of hepatitis. Risk factors for INH related liver injury may include: age > 35 years, female gender, postpartum period, daily consumption of alcohol, injection drug user, slow acetylator phenotype, malnutrition, HIV infection, pre-existing liver disease, extra-pulmonary tuberculosis, and concomitant use of hepatotoxic medications. Clinical data have been reported with concurrent use of acetaminophen, alcohol, carbamazepine, phenobarbital, phenytoin, and rifampin.

MANAGEMENT: Coadministration of isoniazid (INH) with other hepatotoxic medications should be done with caution and close clinical monitoring. Some authorities recommend avoiding concurrent use when possible. If coadministration is needed, baseline and monthly liver function testing as well as monthly interviewing of the patient to check for signs and symptoms of adverse effects is recommended. More frequent testing may be advisable in patients at increased risk of INH-associated liver injury. Some manufacturers of INH recommend strongly considering its discontinuation if serum aminotransferase concentrations (AST or SGOT, ALT or SGPT) exceed 3 to 5 times the upper limit of normal. Patients should be counseled to immediately report signs or symptoms consistent with liver damage and notified that prodromal symptoms usually consist of fatigue, weakness, malaise, anorexia, nausea, and/or vomiting. If hepatic damage is suspected, INH should be immediately discontinued as continuation may lead to more severe damage. If hepatitis is attributed to INH in patients with tuberculosis, alternative drugs should be used. However, if INH must be used, it should only be resumed after the patient's symptoms and laboratory abnormalities have cleared. It should also be restarted in very small, gradually increasing doses and immediately withdrawn if there is any indication of recurrent liver involvement. Consultation with product labeling and relevant guidelines is advisable.

References

  1. "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India) 2 (2021):
  2. "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC. (2023):
  3. "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd (2023):
  4. "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB (2023):
  5. Saukkonen JJ, Cohn DL, Jasmer RM, et al. "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med 174 (2006): 935-52
  6. Bouazzi OE, Hammi S, Bourkadi JE, et al. "First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/" (2024):
  7. Metushi I, Uetrecht J, Phillips E "Mechanism of isoniazid-induced hepatotoxicity: then and now." Br J Clin Pharmacol 81 (2016): 1030-6
  8. National Institute of Diabetes and Digestive and Kidney Diseases "LiverTox: clinical and research information on drug-induced liver injury [internet]. Isoniazid. https://www.ncbi.nlm.nih.gov/books/NBK548754/" (2024):
  9. "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc. (2021):
View all 9 references

Switch to consumer interaction data

Moderate

isoniazid abacavir

Applies to: Nydrazid (isoniazid) and abacavir / lamivudine / zidovudine

MONITOR: Coadministration of isoniazid (INH) with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of INH's acetylation is genetically determined and generally classified as slow or rapid, with slow acetylators characterized by a relative lack of N-acetyltransferase. While the rate of acetylation does not significantly alter INH's effectiveness, it can lead to higher blood levels of INH and an increase of adverse reactions. In addition, INH is an in vitro inhibitor of several CYP450 isoenzymes (2C9, 2C19, 2E1, and 3A4). Coadministration of hepatotoxic drugs eliminated by one or more of these pathways may lead to elevated concentrations of the concomitant drug and increase the risk of hepatotoxicity. Most of the INH-associated hepatitis cases occur during the first 3 months of treatment, but may occur at any time and have been reported to be severe or even fatal. INH is reported in medical literature to cause clinically apparent acute liver injury with jaundice in 0.5% to 1% and fatality in 0.05% to 0.1% of recipients. A United States Public Health Service Surveillance Study of 13,838 people taking INH reported 8 deaths among 174 cases of hepatitis. Risk factors for INH related liver injury may include: age > 35 years, female gender, postpartum period, daily consumption of alcohol, injection drug user, slow acetylator phenotype, malnutrition, HIV infection, pre-existing liver disease, extra-pulmonary tuberculosis, and concomitant use of hepatotoxic medications. Clinical data have been reported with concurrent use of acetaminophen, alcohol, carbamazepine, phenobarbital, phenytoin, and rifampin.

MANAGEMENT: Coadministration of isoniazid (INH) with other hepatotoxic medications should be done with caution and close clinical monitoring. Some authorities recommend avoiding concurrent use when possible. If coadministration is needed, baseline and monthly liver function testing as well as monthly interviewing of the patient to check for signs and symptoms of adverse effects is recommended. More frequent testing may be advisable in patients at increased risk of INH-associated liver injury. Some manufacturers of INH recommend strongly considering its discontinuation if serum aminotransferase concentrations (AST or SGOT, ALT or SGPT) exceed 3 to 5 times the upper limit of normal. Patients should be counseled to immediately report signs or symptoms consistent with liver damage and notified that prodromal symptoms usually consist of fatigue, weakness, malaise, anorexia, nausea, and/or vomiting. If hepatic damage is suspected, INH should be immediately discontinued as continuation may lead to more severe damage. If hepatitis is attributed to INH in patients with tuberculosis, alternative drugs should be used. However, if INH must be used, it should only be resumed after the patient's symptoms and laboratory abnormalities have cleared. It should also be restarted in very small, gradually increasing doses and immediately withdrawn if there is any indication of recurrent liver involvement. Consultation with product labeling and relevant guidelines is advisable.

References

  1. "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India) 2 (2021):
  2. "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC. (2023):
  3. "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd (2023):
  4. "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB (2023):
  5. Saukkonen JJ, Cohn DL, Jasmer RM, et al. "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med 174 (2006): 935-52
  6. Bouazzi OE, Hammi S, Bourkadi JE, et al. "First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/" (2024):
  7. Metushi I, Uetrecht J, Phillips E "Mechanism of isoniazid-induced hepatotoxicity: then and now." Br J Clin Pharmacol 81 (2016): 1030-6
  8. National Institute of Diabetes and Digestive and Kidney Diseases "LiverTox: clinical and research information on drug-induced liver injury [internet]. Isoniazid. https://www.ncbi.nlm.nih.gov/books/NBK548754/" (2024):
  9. "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc. (2021):
View all 9 references

Switch to consumer interaction data

Drug and food interactions

Moderate

isoniazid food

Applies to: Nydrazid (isoniazid)

GENERALLY AVOID: Concurrent use of isoniazid (INH) in patients who ingest alcohol daily may result in an increased incidence of both hepatotoxicity and peripheral neuropathy. The increase in hepatotoxicity may be due to an additive risk as both alcohol and INH are individually associated with this adverse reaction. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of acetylation is genetically determined and generally classified as slow or rapid. Slow acetylators have been identified by some studies as having a higher risk of hepatotoxicity; therefore, this interaction may be more significant for patients who fall into this category. Other studies have postulated that alcohol-mediated CYP450 2E1 induction may play a role, as this isoenzyme is involved in INH metabolism and may be responsible for producing hepatotoxic metabolites. However, available literature is conflicting. The labeling for some INH products lists daily alcohol use or chronic alcoholism as a risk factor for hepatitis, but not all studies have found a significant association between alcohol use and INH-induced hepatotoxicity. Additionally, INH and alcohol are both associated with pyridoxine (B6) deficiency, which may increase the risk of peripheral neuropathy.

GENERALLY AVOID: Concomitant administration of isoniazid (INH) with foods containing tyramine and/or histamine may increase the risk of symptoms relating to tyramine- and/or histamine toxicity (e.g., headache, diaphoresis, flushing, palpitations, and hypotension). The proposed mechanism is INH-mediated inhibition of monoamine oxidase (MAO) and diamine oxidase (DAO), enzymes responsible for the metabolism of tyramine and histamine, respectively. Some authors have suggested that the reactions observed are mainly due to INH's effects on DAO instead of MAO or the amounts of histamine instead of tyramine present in the food. A Japanese case report recorded an example in 8 out of 25 patients on the tuberculosis ward who developed an accidental histamine poisoning after ingesting a fish paste (saury). Patients developed allergy-like symptoms, which started between 20 minutes and 2 hours after ingesting the food. A high-level of histamine (32 mg/100 g of fish) was confirmed in the saury paste and all 8 patients were both on INH and had reduced MAO concentrations. The 17 remaining patients were not on INH (n=5) or reported not eating the saury paste (n=12).

ADJUST DOSING INTERVAL: Administration with food significantly reduces oral isoniazid (INH) absorption, increasing the risk of therapeutic failure or resistance. The mechanism is unknown. Pharmacokinetic studies completed in both healthy volunteers (n=14) and tuberculosis patients (n=20 treatment-naive patients during days 1 to 3 of treatment) have resulted in almost doubling the time to reach INH's maximum concentration (tmax) and a reduction in isoniazid's maximum concentration (Cmax) of 42%-51% in patients who consumed high-fat or high-carbohydrate meals prior to INH treatment.

MANAGEMENT: The manufacturer of oral forms of isoniazid (INH) recommends administration on an empty stomach (i.e., 30 minutes before or 2 hours after meals). Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and INH concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with INH. Concomitant pyridoxine (B6) administration is also recommended to reduce the risk of peripheral neuropathy, with some authorities suggesting a dose of at least 10 mg/day. Patients should be advised to avoid foods containing tyramine (e.g., aged cheese, cured meats such as sausages and salami, fava beans, sauerkraut, soy sauce, beer, or red wine) or histamine (e.g., skipjack, tuna, mackerel, salmon) during treatment with isoniazid. Consultation of product labeling for combination products containing isoniazid and/or relevant guidelines may be helpful for more specific recommendations.

References

  1. Smith CK, Durack DT "Isoniazid and reaction to cheese." Ann Intern Med 88 (1978): 520-1
  2. Dimartini A "Isoniazid, tricyclics and the ''cheese reaction''." Int Clin Psychopharmacol 10 (1995): 197-8
  3. Uragoda CG, Kottegoda SR "Adverse reactions to isoniazid on ingestion of fish with a high histamine content." Tubercle 58 (1977): 83-9
  4. Self TH, Chrisman CR, Baciewicz AM, Bronze MS "Isoniazid drug and food interactions." Am J Med Sci 317 (1999): 304-11
  5. "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India) 2 (2021):
  6. "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC. (2023):
  7. "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd (2023):
  8. "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB (2023):
  9. Saukkonen JJ, Cohn DL, Jasmer RM, et al. "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med 174 (2006): 935-52
  10. Bouazzi OE, Hammi S, Bourkadi JE, et al. "First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/" (2024):
  11. Wang P, Pradhan K, Zhong XB, Ma X "Isoniazid metabolism and hepatoxicity." Acta Pharm Sin B 6 (2016): 384-92
  12. Saktiawati AM, Sturkenboom MG, Stienstra Y, et al. "Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment naive TB patients: a randomized cross-over trial." J Antimicrob Chemother 71 (2016): 703-10
  13. Hahn JA, Ngabirano C, Fatch R, et al. "Safety and tolerability of isoniazid preventive therapy for tuberculosis for persons with HIV with and without alcohol use." AIDS 37 (2023): 1535-43
  14. Huang YS, Chern HD, Su WJ, et al. "Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis." Hepatology 37 (2003): 924-30
  15. Sousou JM, Griffith EM, Marsalisi C, Reddy P "Pyridoxine deficiency and neurologic dysfunction: an unlikely association. https://www.cureus.com/articles/188310-pyridoxine-deficiency-and-neurologic-dysfunction-an-unlikely-association?score_article=true#!/" (2024):
  16. Miki M, Ishikawa T, Okayama H "An outbreak of histamine poisoning after ingestion of the ground saury paste in eight patients taking isoniazid in tuberculous ward." Intern Med 44 (2005): 1133-6
  17. "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc. (2021):
View all 17 references

Switch to consumer interaction data

Minor

zidovudine food

Applies to: abacavir / lamivudine / zidovudine

Food may have variable effects on the oral bioavailability of zidovudine. Fatty foods have been reported to decrease the rate and extent of zidovudine absorption following oral administration. In a study of 13 AIDS patients, mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of zidovudine were 2.8 and 1.4 times higher, respectively, in fasting patients than in those administered the medication with breakfast. In addition, variations in plasma zidovudine concentrations were increased when administered in the fed state. In another study of eight patients, the time to reach peak concentration (Tmax) was increased from 0.68 to 1.95 hours, and Cmax was reduced by 50% when zidovudine was administered with a liquid high-fat meal relative to fasting. Protein meals can also delay the absorption and reduce the Cmax of zidovudine, although the extent of absorption is not significantly affected. The clinical significance of these alterations, if any, is unknown. The product labeling states that zidovudine may be taken with or without food.

References

  1. Lotterer E, Ruhnke M, Trautman M, et al. "Decreased and variable systemic availability of zidovudine in patients with AIDS if administered with a meal." Eur J Clin Pharmacol 40 (1991): 305-8
  2. Unadkat JD, Collier AC, Crosby SS, et al. "Pharmacokinetics of oral zidovudine (azidothymidine) in patients with AIDS when administered with and without a high-fat meal." AIDS 4 (1990): 229-32
  3. "Product Information. Retrovir (zidovudine)." Glaxo Wellcome PROD (2001):
  4. Sahai J, Gallicano K, Garber G, et al. "The effect of a protein meal on zidovudine pharmacokinetics in HIV-infected patients." Br J Clin Pharmacol 33 (1992): 657-60
View all 4 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.