Skip to main content

Preface to Penicillins (Monograph)

Drug class: Penicillins

Classification of Penicillins Based on Spectra of Activity

Penicillins are natural or semisynthetic antibiotics produced by or derived from certain species of the fungus Penicillium.10 61 62 70 10 The drugs are β-lactam antibiotics structurally and pharmacologically related to other β-lactam antibiotics, including cephalosporins and cephamycins.10 61 62 64 89 575 Penicillins contain a 6-aminopenicillanic acid (6-APA) nucleus, which is composed of a β-lactam ring fused to a 5-membered thiazolidine ring .61 62 63 64 70 72 89 Although the 6-APA nucleus has little antibacterial activity itself, it is a major structural requirement for antibacterial activity of penicillins.62 63 64 88 89 In currently available penicillins, cleavage at any point in the penicillin nucleus, including the β-lactam ring, results in complete loss of antibacterial activity.62 A free carboxyl group in the thiazolidine ring and one or more substituted amino side chains at R are also essential for antibacterial activity.62 89

Addition of various side chains at R on the penicillin nucleus results in penicillin derivatives with differences in spectra of activity, stability against hydrolysis by β-lactamases, acid stability, GI absorption, and protein binding.62 63 64 67 88 89 575

Currently available penicillins can be divided into 4 groups based principally on their spectra of activity:61 62 63 64 575

NATURAL PENICILLINS

penicillin G

penicillin V

Natural penicillins are produced by fermentation of mutant strains of Penicillium chrysogenum.61 64 70 72 89 575 Natural penicillins with different side chains at R are produced by altering the composition of the culture media of Penicillium.61 64 68 70 89 Although various natural penicillins have been produced (e.g., penicillins F, G, N, O, V, X), only penicillin G and penicillin V are used clinically.64 68 70 89 575

Natural penicillins are active in vitro against many gram-positive aerobic cocci including nonpenicillinase-producing Staphylococcus aureus and S. epidermidis,8 9 10 11 12 18 19 20 21 61 64 70 71 72 88 116 205 Streptococcus pneumoniae,8 9 10 11 18 19 20 21 61 64 71 72 88 177 206 215 581 S. pyogenes (group A β-hemolytic streptococci; GAS),3 4 5 7 8 9 11 12 18 19 20 21 61 S. agalactiae (group B streptococci; GBS),61 174 other β-hemolytic streptococci (e.g., groups C, G, H, L, R),3 4 5 7 8 9 10 11 12 18 19 20 21 61 64 72 173 174 181 205 212 215 261 viridans streptococci,18 19 20 21 61 72 88 173 and nonenterococcal group D streptococci.61 116 173 205 Although some strains of enterococci are susceptible to penicillin G in vitro, many strains are resistant and penicillin tolerance has been reported.61 116 288 Natural penicillins are readily hydrolyzed by staphylococcal penicillinases and are therefore inactive against penicillinase-producing strains of S. aureus and S. epidermidis.3 4 5 7 8 9 10 11 12 18 19 20 21 61 64 116 The drugs are active in vitro against some gram-positive aerobic bacilli including Bacillus anthracis,8 9 11 12 18 19 20 21 61 64 72 88 116 Corynebacterium diphtheriae,8 9 11 12 18 19 20 21 61 64 72 88 116 Erysipelothrix rhusiopathiae,61 and Listeria monocytogenes.8 9 11 12 18 19 20 21 61 64 72 88

Natural penicillins also are active in vitro against some gram-negative aerobic cocci including Neisseria meningitidis.8 9 11 12 61 64 71 72 88 Although natural penicillins may be active in vitro against strains of nonpenicillinase-producing N. gonorrhoeae,8 9 11 12 61 64 71 72 88 penicillinase-producing strains of N. gonorrhoeae (PPNG) are resistant.61 171 172 176 The drugs are active in vitro against some gram-negative aerobic bacilli including some strains of Haemophilus influenzae,61 71 116 205 Pasteurella multocida,61 64 183 Streptobacillus moniliformis,61 64 213 and Spirillum minus.61 However, Pseudomonas61 116 210 and most Enterobacteriaceae61 64 71 72 88 89 116 are resistant to natural penicillins.

Natural penicillins are active in vitro against many gram-positive anaerobic bacteria, includingActinomyces israelii,8 9 11 12 18 19 20 21 61 64 72 88 Clostridium (C. botulinum, C. perfringens, and C. tetani),8 9 11 12 18 19 20 21 61 194 Cutibacterium acnes (formerly Propionibacterium acnes),61 179 Eubacterium,61 Lactobacillus,61 Peptococcus,116 194 and Peptostreptococcus.61 116 Gram-negative anaerobic bacteria vary in their susceptibility to the drugs.61 64 72 88 116 194 Although penicillin G is active in vitro against some strains of Fusobacterium,61 116 194 209 Veillonella,116 194 and Bacteroides oralis, the B. fragilis group (e.g., B. fragilis, B. distasonis, B. ovatus, B. thetaiotaomicron, B. vulgatus) require high penicillin G concentrations for in vitro inhibition and usually are resistant.61 72 88 116 194 211

The drugs also are active against spirochetes, including Treponema pallidum subsp pallidum,3 4 5 7 8 9 11 12 61 T. pallidum subsp pertenue,61 T. carateum,3 Leptospira,8 9 11 12 18 19 20 21 61 Borrelia burgdorferi (causative agent of Lyme disease),61 220 221 224 B. hermsii,61 and B. recurrentis.178

PENICILLINASE-RESISTANT PENICILLINS

dicloxacillin

oxacillin

nafcillin

Penicillinase-resistant penicillins are semisynthetic derivatives of 6-APA that are stable against hydrolysis by staphylococcal penicillinases.61 62 63 64 68 69 72 88 89 97 These penicillins have bulky side chains at R on the 6-APA nucleus that result in steric hindrance and help to prevent attachment of penicillinases to the β-lactam ring.62 68 69 72 88 89 575

Because penicillinase-resistant penicillins are not hydrolyzed by most staphylococcal penicillinases, these drugs are active in vitro against many penicillinase-producing strains of S. aureus27 28 29 61 88 97 222 223 224 and S. epidermidis61 88 97 223 that are resistant to natural penicillins, aminopenicillins, and extended-spectrum penicillins.

Penicillinase-resistant penicillins also have some in vitro activity against other gram-positive bacteria61 64 68 69 72 88 97 116 222 223 224 225 226 227 228 and some gram-negative bacteria61 69 72 88 97 116 224 and spirochetes;88 however, the drugs generally are less active on a weight basis against these organisms than natural penicillins,61 62 74 88 97 427 and use of penicillinase-resistant penicillins generally is limited to the treatment of infections caused by susceptible penicillinase-producing staphylococci.27 28 34 35 61 64 67 80 97 203 406 427 865

AMINOPENICILLINS

amoxicillin

ampicillin

Aminopenicillins are semisynthetic derivatives of 6-APA which have a free amino group at the α-position at R on the penicillin nucleus.61 62 68 74 76 88 575 Partly because of this polar group, aminopenicillins have enhanced activity against gram-negative bacteria compared with natural penicillins and penicillinase-resistant penicillins.62 68 74 88 575

In vitro, aminopenicillins are generally active against gram-positive aerobic cocci and gram-positive aerobic bacilli that are susceptible to natural penicillins.61 63 64 73 116 205 226 228 However, with the possible exception of enterococcal infections, natural penicillins are generally the penicillins of choice for the treatment of infections caused by gram-positive cocci that are susceptible to both natural penicillins and aminopenicillins.10 63 64 67 80 Like natural penicillins and extended-spectrum penicillins, aminopenicillins are readily hydrolyzed by staphylococcal penicillinases and are therefore inactive against penicillinase-producing strains of S. aureus and S. epidermidis.36 37 38 39 61 64 68 75 76 116 226 228

Aminopenicillins are generally active in vitro against gram-negative aerobic cocci,61 116 228 gram-negative aerobic bacilli,61 116 183 205 and anaerobic bacteria61 68 116 that are susceptible to natural penicillins. In addition, aminopenicillins are active in vitro against some Enterobacteriaceae including some strains of Escherichia coli,61 73 76 116 226 228 Proteus mirabilis,61 76 116 226 228 Salmonella,61 76 116 226 228 and Shigella.61 76 116 226 228 Aminopenicillins are generally inactive against other Enterobacteriaceae,61 63 116 226 B. fragilis,61 63 and Pseudomonas.61 73 116 226 228

Because clavulanic acid and sulbactam are β-lactamase inhibitors that can inhibit certain β-lactamases that inactivate aminopenicillins, fixed combinations of amoxicillin and clavulanate potassium (amoxicillin/clavulanate) and fixed combinations of ampicillin sodium and sulbactam sodium (ampicillin/sulbactam) are active in vitro against many β-lactamase-producing organisms that are resistant to the aminopenicillin alone.40 41 61 117 118 119 120 311 312 314 316 318

EXTENDED-SPECTRUM PENICILLINS

piperacillin

ticarcillin (no longer commercially available in the US)

Extended-spectrum penicillins are semisynthetic derivatives of 6-APA that have a wider spectra of activity than natural penicillins, penicillinase-resistant penicillins, and aminopenicillins.55 61 64 68 103 202 208 593

The group of extended-spectrum penicillins is composed of 2 different subgroups: Acylaminopenicillins (piperacillin) and α-carboxypenicillins (ticarcillin; no longer commercially available in the US).61 64 68 102 202 208 518 593 Acylaminopenicillins have basic groups on the side chain at R on the penicillin nucleus202 208 and α-carboxypenicillins have a carboxylic acid group at the α-position at R on the penicillin nucleus.68 88 99 103 202 575 Partly because of these polar groups, extended-spectrum penicillins are more active against gram-negative aerobic and gram-negative anaerobic bacilli than aminopenicillins,68 88 99 103 202 575 and use of extended-spectrum penicillins is generally limited to the treatment of serious infections caused by susceptible gram-negative bacilli78 100 102 570 953 or mixed aerobic-anaerobic bacterial infections.100 102 593 955

In vitro, extended-spectrum penicillins are generally active against gram-positive and gram-negative aerobic cocci that are susceptible to natural penicillins and aminopenicillins.78 99 100 116 205 215 Like natural penicillins and aminopenicillins, extended-spectrum penicillins are hydrolyzed by staphylococcal penicillinases and are therefore inactive when used alone against penicillinase-producing strains of S. aureus and S. epidermidis.67 78 79 100 102 205 219 Extended-spectrum penicillins have some activity against gram-positive aerobic and gram-positive anaerobic bacilli, but the drugs are generally less active in vitro on a weight basis against these organisms than are natural penicillins and aminopenicillins.100 116

Extended-spectrum penicillins are generally active in vitro against gram-negative bacilli that are susceptible to aminopenicillins.61 67 68 78 79 99 116 198 The drugs are also active against many Enterobacteriaceae and some Pseudomonas that are resistant to other currently available penicillins.61 67 68 78 79 99 198 204 215 237 α-Carboxypenicillins are active in vitro against some strains of E. coli,61 99 197 198 Morganella morganii,61 78 198 215 P. mirabilis,78 99 198 215 P. vulgaris,61 78 99 215 Providencia rettgeri,78 198 215 Salmonella,78 99 Shigella,78 and Ps. aeruginosa.61 78 99 116 204 219 239 240 302 In addition to these organisms, acylaminopenicillins are generally active in vitro against some strains of Citrobacter,61 237 Enterobacter,61 237 Klebsiella,61 64 219 237 and Serratia.61 Extended-spectrum penicillins are more active in vitro against B. fragilis than other currently available penicillins.61 78 79 219 246

The only extended-spectrum penicillin commercially available in the US is piperacillin sodium in fixed combination with tazobactam sodium (piperacillin/tazobactam).55 Because tazobactam has a high affinity for and irreversibly binds to certain β-lactamases that can inactivate extended-spectrum penicillins, piperacillin/tazobactam is active against many β-lactamase-producing bacteria that are resistant to piperacillin alone.56 57

Related Monographs

For more complete information on the spectra of activity of penicillins and additional information on the drugs, see the General Statements on Natural Penicillins, Aminopenicillins, and Penicillinase-Resistant Penicillins and the individual monographs in 8:12.16.04, 8:12.16.08, 8:12.16.12, and 8:12.16.16.

AHFS DI Essentials™. © Copyright 2025, Selected Revisions January 10, 2025. American Society of Health-System Pharmacists, Inc., 4500 East-West Highway, Suite 900, Bethesda, Maryland 20814.

References

3. Pfizer. Bicillin L-A (penicillin G benzathine) injectable suspension prescribing information. New York, NJ; 2016 Jun.

4. Pfizer. Bicillin C-R 900/300 (penicillin G benzathine and penicillin G procaine) injectable suspension for deep IM injection only prescribing information. New York, NY; 2016 Jun.

5. Pfizer. Bicillin C-R (penicillin G benzathine and penicillin G procaine) injectable suspension disposable syringe for deep IM injection only prescribing information. New York, NY; 2016 Jun.

7. Pfizer. Penicillin G procaine injectable suspension for deep IM injection only prescribing information. New York, NY; 2016 Oct.

8. Sandoz. Penicillin G sodium for injection, USP 5 million units prescribing information. Princeton, NJ; 2014 May.

9. Pfizer. Pfizerpen (penicillin G potassium) for injection prescribing information. Princeton, NJ; 2016 Dec.

10. Bennett JE, Dolin R, Blaser MK, eds. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Elsevier Saunders; Philadelphia, PA; 2015.

11. Baxter Healthcare Corporation. Penicillin G potassium injection, USP for intravenous use only prescribing information. Deerfield, IL; 2017 Nov.

12. WG Critical Care. Penicillin G potassium for injection, USP prescribing information. Paramus, NJ; 2013 Feb.

18. Teva Pharmaceuticals USA, Inc. Penicillin V potassium tablets, USP and penicillin V potassium for oral solution, USP prescribing information. North Wales, PA; 2014 Nov.

19. Par Pharmaceutical. Penicillin V potassium tablets, USP and penicillin V potassium for oral solution, USP prescribing information. Fort Lee, NJ; 2014 Mar.

20. Sandoz Inc. Penicillin-VK (penicillin V potassium) tablets, USP prescribing information. Princeton, NJ; 2014 Apr.

21. Aurobindo Pharma Limited. Penicillin V potassium tablets, USP prescribing information. Dayton, NJ; 2017 Aug.

27. Sandoz. Dicloxacillin sodium capsules, USP prescribing information. Princeton, NJ; 2020 Nov.

28. Hospira. Nafcillin injection, powder for solution prescribing information. Lake Forest, IL; 2020 Dec.

29. Baxter Healthcare. Nafcillin injection solution for IV use only prescribing information. Deerfield, IL; 2018 Sep.

34. Fresenius Kabi USA. Oxacillin injection powder for solution, USP prescribing information. Princeton, NJ; 2020 Jun.

35. Baxter Healthcare. Oxacillin injection for IV use only prescribing information. Deerfield, IL; 2018 Sep.

36. Sandoz. Amoxicillin capsules, tablets, and powder for oral suspension prescribing information. Princeton, NJ: 2020 Jun.

37. Teva. Amoxicillin capsules, powder for oral suspension, and chewable tablets prescribing information. North Wales, PA: 2018 Aug.

38. Hospira. Ampicillin sodium injection, powder, for solution prescribing information. Lake Forest, IL; 2020 Aug.

39. Sandoz. Ampicillin capsules prescribing information. Princeton, NJ; 2020 Aug.

40. Sandoz. Amoxicillin and clavulanate potassium tablets, powder for suspension, and chewable tablets prescribing information. New York, NY; 2020 Sep.

41. Roerig. Unasyn (ampicillin sodium and sulbactam sodium injection, powder, for solution) prescribing information. Princeton, NJ; 2020 Sep.

55. Hospira. Piperacillin and tazobactam injection, powder, lyophilized, for solution prescribing information. Lake Forest, IL; 2020 May.

56. Williams JD. Interactions between antibiotics and beta-lactamase inhibitors. Infect Med. 1993; 10(Suppl A):15-21.

57. Fuchs PC, Barry AL. In vitro activity of piperacillin/tazobactam: a review. Infect Med. 1993; 10(Suppl A):22-7.

61. Grayson ML, ed. Kucers' the use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic, and antiviral drugs. 7th ed. Boca Raton, FL: CRC Press; 2018:.

62. Hou JP, Poole JW. β-Lactam antibiotics: their physiochemical properties and biological activities in relation to structure. J Pharm Sci. 1971; 60:503-27. https://pubmed.ncbi.nlm.nih.gov/4336386

63. Neu HC. Penicillins: microbiology, pharmacology, and clinical use. In: Kagan BM, ed. Antimicrobial therapy. 3rd ed. Philadelphia: WB Saunders Company; 1980:20-34.

64. Mandell GL, Sande MA. Antimicrobial agents: penicillins and cephalosporins. In: Gilman AG, Goodman L, Gilman A, eds. Goodman and Gilman’s the pharmacological basis of therapeutics. 6th ed. New York: Macmillan Publishing Company; 1980:1126-61.

67. Wilkowske CJ. The penicillins. Mayo Clin Proc. 1977; 52:616-24. https://pubmed.ncbi.nlm.nih.gov/242733

68. Rolinson GN, Sutherland R. Semisynthetic penicillins. Adv Pharmacol Chemother. 1973; 11:152-220.

69. Marcy SM, Klein JO. The isoxazolyl penicillins: oxacillin, cloxacillin, and dicloxacillin. Med Clin North Am. 1970; 52:1127-43.

70. Fishman LS, Hewitt WL. The natural penicillins. Med Clin North Am. 1970; 54:1081-99. https://pubmed.ncbi.nlm.nih.gov/4248661

71. Sabath LD. Phenoxymethylpenicillin (penicillin V) and phenethicillin. Med Clin North Am. 1970; 54:1101-11. https://pubmed.ncbi.nlm.nih.gov/4990453

72. Ball AP, Gray JA, Murdoch JM. Antibacterial drugs today: Part I. Drugs. 1975; 10:1-55. https://pubmed.ncbi.nlm.nih.gov/1100345

73. Brogden RN, Speight TM, Avery GS. Amoxycillin: a review of its antibacterial and pharmacokinetic properties and therapeutic use. Drugs. 1975; 9:88-140. https://pubmed.ncbi.nlm.nih.gov/1126306

74. Neu HC. New broad-spectrum penicillins. Drugs. 1975; 8:81-7.

75. Brogden RN, Heel RC, Speight TM et al. Amoxycillin injectable: a review of its antibacterial spectrum, pharmacokinetics and therapeutic use. Drugs. 1979; 18:169-84. https://pubmed.ncbi.nlm.nih.gov/387371

76. Reeves DS, Bullock DW. The aminopenicillins: development and comparative properties. Infection. 1979; 7(Suppl 5):S425-32. https://pubmed.ncbi.nlm.nih.gov/389819

78. Brogden RN, Heel RC, Speight TM et al. Ticarcillin: a review of its pharmacological properties and therapeutic efficacy. Drugs. 1980; 20:325-52. https://pubmed.ncbi.nlm.nih.gov/7002527

79. Russo J, Russo ME. Comparative review of two new wide-spectrum penicillins: mezlocillin and piperacillin. Clin Pharm. 1982; 1:207-16. https://pubmed.ncbi.nlm.nih.gov/6224627

80. Barza M. Antimicrobial spectrum, pharmacology and therapeutic use of antibiotics. Part 2: penicillins. Am J Hosp Pharm. 1977; 34:57-67. https://pubmed.ncbi.nlm.nih.gov/318800

88. Selwyn S. The mechanisms and range of activity of penicillins and cephalosporins. In: Selwyn S, ed. The beta-lactam antibiotics: penicillins and cephalosporins in perspective. London: Hodder and Stoughton; 1980:56-90.

89. Wolff ME, ed. Burger’s medicinal chemistry. 4th ed. New York: John Wiley & Sons; 1980:84-157.

97. Neu HC. Antistaphylococcal penicillins. Med Clin North Am. 1982; 66:51-60. https://pubmed.ncbi.nlm.nih.gov/7038340

99. Butler K, English AR, Ray VA et al. Carbenicillin: chemistry and mode of action. J Infect Dis. 1970; 122(Suppl):S1-8. https://pubmed.ncbi.nlm.nih.gov/4248289

100. Neu HC. Carbenicillin and ticarcillin. Med Clin North Am. 1982; 66:61-77. https://pubmed.ncbi.nlm.nih.gov/7038341

102. Eliopoulos GM, Moellering RC. Azlocillin, mezlocillin, and piperacillin: new broad-spectrum penicillins. Ann Intern Med. 1981; 97:755-60.

103. Christensen BG. Structure-activity relationships in β-lactam antibiotics. In: Salton M, Shockman GD, eds. β-Lactam antibiotics: mode of action, new developments, and future prospects. New York: Academic Press; 1981:101-11.

116. Lorian V, ed. Antibiotics in laboratory medicine. Baltimore: Williams & Wilkins; 1980:298-341, 418-73, 607-722.

117. Lomothe F, Auger F, Lacroix J-M. Effect of clavulanic acid on the activities of ten β-lactam agents against members of the Bacteroides fragilis group. Antimicrob Agents Chemother. 1984; 25:662-5. https://pubmed.ncbi.nlm.nih.gov/6732233 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC185612/

118. Yogev R, Melick C, Kabat WJ. In vitro and in vivo synergism between amoxicillin and clavulanic acid against ampicillin-resistant Haemophilus influenzae type b. Antimicrob Agents Chemother. 1981; 19:993-6. https://pubmed.ncbi.nlm.nih.gov/6973952 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC181597/

119. Reading C, Farmer T, Cole M. The β-lactamase stability of amoxycillin with the β-lactamase inhibitor, clavulanic acid. J Antimicrob Chemother. 1983; 11:27-32. https://pubmed.ncbi.nlm.nih.gov/6600741

120. Fuglesang JE, Bergan T. Antibacterial activity and kill kinetics of amoxicillin-clavulanic acid combinations against Escherichia coli and Klebsiella aerogenes . Infection. 1983; 11:329-35. https://pubmed.ncbi.nlm.nih.gov/6365790

171. Hall WH, Schierl EA, Maccani JE. Comparative susceptibility of penicillinase-positive and -negative Neisseria gonorrhoeae to 30 antibiotics. Antimicrob Agents Chemother. 1979; 15:562-7. https://pubmed.ncbi.nlm.nih.gov/111617 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC352711/

172. Cohen MS, Cooney MH, Blackman E et al. In vitro antimicrobial susceptibility of penicillinase-producing and intrinsically resistant Neisseria gonorrhoeae strains. Antimicrob Agents Chemother. 1983; 24:597-9. https://pubmed.ncbi.nlm.nih.gov/6418065 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC185380/

173. Bourgault AM, Wilson WR, Washington JA. Antimicrobial susceptibilities of species of viridans streptococci. J Infect Dis. 1979; 140:316-21. https://pubmed.ncbi.nlm.nih.gov/501146

174. Bayer AS, Morrison JO, Kim KS. Comparative in vitro bactericidal activity of cefonicid, ceftizoxime, and penicillin against group B streptococci. Antimicrob Agents Chemother. 1982; 21:344-6. https://pubmed.ncbi.nlm.nih.gov/6280602 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC181886/

176. Rodriguez J, Fuxench-Chiesa Z, Ramirez-Ronda CH et al. In vitro susceptibility of 50 non-β-lactamase-producing Neisseria gonorrhoeae strains to 12 antimicrobial agents. Antimicrob Agents Chemother. 1983; 23:242-4. https://pubmed.ncbi.nlm.nih.gov/6404217 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC186029/

177. Tarpay MM, Welch DF, Salari H et al. In vitro activity of antibiotics commonly used in the treatment of otitis media against Streptococcus pneumoniae isolates with different susceptibilities to penicillin. Antimicrob Agents Chemother. 1982; 22:145-7. https://pubmed.ncbi.nlm.nih.gov/6922691 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC183689/

178. Barbour AG, Todd WJ, Stoenner HG. Action of penicillin on Borrelia hermsii . Antimicrob Agents Chemother. 1982; 21:823-9. https://pubmed.ncbi.nlm.nih.gov/7103461 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC182019/

179. Denys GA, Jerris RC, Swenson JM et al. Susceptibility of Propionibacterium acnes clinical isolates to 22 antimicrobial agents. Antimicrob Agents Chemother. 1983; 23:335-7. https://pubmed.ncbi.nlm.nih.gov/6838191 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC186050/

181. Jacobs MR, Kelly F, Speck WT. Susceptibility of group B streptococci to 16 β-lactam antibiotics, including new penicillin and cephalosporin derivatives. Antimicrob Agents Chemother. 1982; 22:887-900.

183. Stevens DL, Higbee JW, Oberhofer TR et al. Antibiotic susceptibilities of human isolates of Pasteurella multocida . Antimicrob Agents Chemother. 1979; 16:322-4. https://pubmed.ncbi.nlm.nih.gov/507787 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC352853/

194. Marrie TJ, Haldane EV, Swantee CA et al. Susceptibility of anaerobic bacteria to nine antimicrobial agents and demonstration of decreased susceptibility of Clostridium perfringens to penicillin. Antimicrob Agents Chemother. 1981; 19:51-5. https://pubmed.ncbi.nlm.nih.gov/6264842 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC181356/

197. Coppens L, Klastersky J. Comparative study of antipseudomonas activity of azlocillin, mezlocillin, and ticarcillin. Antimicrob Agents Chemother. 1979; 15:396-9. https://pubmed.ncbi.nlm.nih.gov/111610 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC352672/

198. Standiford HC, Kind AC, Kirby WM. Laboratory and clinical studies of carbenicillin against gram-negative bacilli.Antimicrob Agents Chemother. 1968:286-91.

202. Basker MJ, Edmondson RA, Sutherland R. Comparative antibacterial activity of azlocillin, mezlocillin, carbenicillin and ticarcillin and relative stability to beta-lactamases of Pseudomonas aeruginosa and Klebsiella aerogenes . Infection. 1979; 7:67-72. https://pubmed.ncbi.nlm.nih.gov/108220

203. Sheagren JN. Staphylococcus aureus—the persistent pathogen (second of two parts). N Engl J Med. 1984; 310:1437-42. https://pubmed.ncbi.nlm.nih.gov/6371536

204. Verbist L. Comparison of the activities of the new ureidopenicillins piperacillin, mezlocillin, azlocillin, and Bay k 4999 against gram-negative organisms. Antimicrob Agents Chemother. 1979; 16:115-9. https://pubmed.ncbi.nlm.nih.gov/485123 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC352806/

205. Sanders CC. Comparative activity of mezlocillin, penicillin, ampicillin, carbenicillin, and ticarcillin against gram-positive bacteria and Haemophilus influenzae . Antimicrob Agents Chemother. 1981; 2:843-6.

206. Jacobs MR, Path FF, Path MR et al. Emergence of multiply resistant pneumococci. N Engl J Med. 1978; 299:735-40. https://pubmed.ncbi.nlm.nih.gov/29219

208. White AR, Comber KE, Sutherland R. Comparative bactericidal effects of azlocillin and ticarcillin against Pseudomonas aeruginosa . Antimicrob Agents Chemother. 1980; 18:182-9. https://pubmed.ncbi.nlm.nih.gov/6774663 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC283961/

209. Seidenfeld SM, Sutker WL, Luby JP. Fusobacterium necrophorum septicemia following oropharyngeal infection. JAMA. 1982; 248:1348-50. https://pubmed.ncbi.nlm.nih.gov/6955528

210. Fass RJ, Barnishan J. In vitro susceptibilities of nonfermentative gram-negative bacilli other than Pseudomonas aeruginosa to 32 antimicrobial agents. Rev Infect Dis. 1980; 2:841-52. https://pubmed.ncbi.nlm.nih.gov/7012987

211. Aldridge KE, Sanders CV, Janney A et al. Comparison of the activities of penicillin G and new β-lactam antibiotics against clinical isolates of Bacteroides species. Antimicrob Agents Chemother. 1984; 26:410-3. https://pubmed.ncbi.nlm.nih.gov/6334491 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC176181/

212. Lam K, Bayer AS. In vitro bactericidal synergy of gentamicin combined with penicillin G, vancomycin, or cefotaxime against group G streptococci. Antimicrob Agents Chemother. 1984; 26:260-2. https://pubmed.ncbi.nlm.nih.gov/6091537 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC284132/

213. Shanson DC, Gazzard BG, Midgley J et al. Streptobacillus moniliformis isolated from blood in four cases of Haverhill fever: first outbreak in Britain. Lancet. 1983; 2:92-4. https://pubmed.ncbi.nlm.nih.gov/6134972

215. Hall WH, Opfer BJ, Gerding DN. Comparative activities of the oxa-β-lactam LY127935, cefotaxime, cefoperazone, cefamandole, and ticarcillin against multiply resistant gram-negative bacilli. Antimicrob Agents Chemother. 1980; 17:273-9. https://pubmed.ncbi.nlm.nih.gov/6247970 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC283771/

219. McAllister TA. Piperacillin against clinical isolates: antimicrobial profile and clinical role. J Antimicrob Chemother. 1982; 9(Suppl B):75-84. https://pubmed.ncbi.nlm.nih.gov/6460736

220. Mursic VP, Wilske B, Schierz G. In vitro and in vivo susceptibility of Borrelia burgdorferi . Eur J Clin Microbiol. 1987; 6:424-6. https://pubmed.ncbi.nlm.nih.gov/3665899

221. Johnson RC, Kodner CB, Jurkovich PJ et al. Comparative in vitro and in vivo susceptibilities of the Lyme disease spirochete Borrelia burgdorferi to cefuroxime and other antimicrobial agents. Antimicrob Agents Chemother. 1990; 34:2133-6. https://pubmed.ncbi.nlm.nih.gov/2073103 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC172012/

222. Gravenkemper CF, Bennett JV, Brodie JL et al. Dicloxacillin: in vitro and pharmacologic comparisons with oxacillin and cloxacillin. Arch Intern Med. 1965; 116:340-5. https://pubmed.ncbi.nlm.nih.gov/14325906

223. Hammerstrom CF, Cox F, McHenry MC et al. Clinical, laboratory, and pharmacological studies of dicloxacillin.Antimicrob Agents Chemother. 1966:69-74.

224. Klein JO, Finland M. Nafcillin: antibacterial action in vitro and absorption and excretion in normal young men. Am J Med Sci. 1963; 246:44-60.

225. Kirby WM, Rosenfeld LS, Brodie J. Oxacillin: laboratory and clinical evaluation. JAMA. 1962; 181:739-44. https://pubmed.ncbi.nlm.nih.gov/14456243

226. Sutherland R, Croydon EA, Rolinson GN. Amoxycillin: a new semi-synthetic penicillin. Br Med J. 1972; 3:13-6. https://pubmed.ncbi.nlm.nih.gov/4402672 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1788503/

227. Muckter H, Sous H, Poszich G et al. Comparative studies of the activity of ciclacillin and dicloxacillin. Chemotherapy. 1976; 22:183-9. https://pubmed.ncbi.nlm.nih.gov/1269288

228. Rolinson GN. Laboratory evaluation of amoxicillin. J Infect Dis. 1974; 129(Suppl):S139-45. https://pubmed.ncbi.nlm.nih.gov/4601188

237. Winston DJ, Wang D, Young LS et al. In vitro studies of piperacillin, a new semisynthetic penicillin. Antimicrob Agents Chemother. 1978; 13:944-50. https://pubmed.ncbi.nlm.nih.gov/677861 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC352367/

239. Fu KP, Neu HC. Piperacillin, a new penicillin active against many bacteria resistant to other penicillins. Antimicrob Agents Chemother. 1978; 13:358-67. https://pubmed.ncbi.nlm.nih.gov/122519 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC352246/

240. Verbist L. In vitro activity of piperacillin, a new semisynthetic penicillin with an unusually broad spectrum of activity. Antimicrob Agents Chemother. 1978; 13:349-57. https://pubmed.ncbi.nlm.nih.gov/122518 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC352245/

246. Fass RJ. In vitro activities of β-lactam and aminoglycoside antibiotics: a comparative study of 20 parenterally administered drugs. Arch Intern Med. 1980; 140:763-8. https://pubmed.ncbi.nlm.nih.gov/7387270

261. Lam K, Bayer AS. Serious infections due to group G streptococci: report of 15 cases with in vitro-in vivo correlations. Am J Med. 1983; 75:561-70. https://pubmed.ncbi.nlm.nih.gov/6556004

288. Kaye D. Enterococci: biologic and epidemiologic characteristics and in vitro susceptibility. Arch Intern Med. 1982; 142:2006-9. https://pubmed.ncbi.nlm.nih.gov/6812524

302. Gillet AP. Antibiotics against Pseudomonas . J Antimicrob Chemother. 1982; 9(Suppl):41-8.

311. Wise R, Andrews JM, Bedford KA. In vitro study of clavulanic acid in combination with penicillin, amoxycillin, and carbenicillin. Antimicrob Agents Chemother. 1978; 13:389-93. https://pubmed.ncbi.nlm.nih.gov/122520 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC352250/

312. Hunter PA, Coleman K, Fisher J et al. In vitro synergistic properties of clavulanic acid, with ampicillin, amoxycillin and ticarcillin. J Antimicrob Chemother. 1980; 6:455-70. https://pubmed.ncbi.nlm.nih.gov/6968746

314. Girouard YC, Maclean IW, Ronald AR et al. Synergistic antibacterial activity of clavulanic acid and amoxicillin against β-lactamase-producing strains of Haemophilus ducreyi . Antimicrob Agents Chemother. 1981; 20:144-5. https://pubmed.ncbi.nlm.nih.gov/6974538 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC181647/

316. Matsuura M, Nakazawa H, Hashimoto T et al. Combined antibacterial activity of amoxicillin with clavulanic acid against ampicillin-resistant strains. Antimicrob Agents Chemother. 1980; 17:908-11. https://pubmed.ncbi.nlm.nih.gov/6967713 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC283901/

318. Brogden RN, Carmine A, Heel RC et al. Amoxycillin/clavulanic acid: a review of its antibacterial activity, pharmacokinetics and therapeutic use. Drugs. 1981; 22:337-62. https://pubmed.ncbi.nlm.nih.gov/7037354

406. Rutenburg AM, Greenberg HL. Oxacillin in staphylococcal infections: clinical evaluation of oral and parenteral administration. JAMA. 1964; 187:127-32.

427. Gilbert DN, Sanford JP. Methicillin: critical appraisal after a decade of experience. Med Clin North Am. 1970; 54:1113-25. https://pubmed.ncbi.nlm.nih.gov/4248509

518. Gergan T. Overview of acylureidopenicillin pharmacokinetics. Scand J Infect Dis. 1981; 29(Suppl):33-48.

570. Dickinson GM, Droller DG, Greenman RL et al. Clinical evaluation of piperacillin with observations on penetrability into cerebrospinal fluid. Antimicrob Agents Chemother. 1981; 20:481-6. https://pubmed.ncbi.nlm.nih.gov/6211133 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC181727/

575. Martin AR. Antibiotics. In: Doerge RF, ed. Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry. 8th ed. Philadelphia: JB Lippincott Company; 1982:228-47.

581. Anderson KC, Maurer MJ, Dajani AS. Pneumococci relatively resistant to penicillin: a prevalence survey in children. J Pediatr. 1980; 97:939-41. https://pubmed.ncbi.nlm.nih.gov/6904489

593. Fortner CL, Finley RS, Schimpff SC. Piperacillin sodium: antibacterial spectrum, pharmacokinetics, clinical efficacy, and adverse reactions. Pharmacotherapy. 1982; 2:287-99. https://pubmed.ncbi.nlm.nih.gov/6220262

865. Kunin CM. Penicillinase-resistant penicillins. JAMA. 1977; 237:1605-6. https://pubmed.ncbi.nlm.nih.gov/576661

953. Gooding PG, Clark BJ, Sathe SS. Piperacillin: a review of clinical experience. J Antimicrob Chemother. 1982; 9(Suppl B):93-9. https://pubmed.ncbi.nlm.nih.gov/6460738

955. Finegold SM. Pathogenic anaerobes. Arch Intern Med. 1982; 142:1988-92. https://pubmed.ncbi.nlm.nih.gov/7125789