Skip to main content

Drug Interaction Report

6 potential interactions and/or warnings found for the following 2 drugs:

Filter by interaction and/or warning

Interactions between your drugs

Major

calcium carbonate patiromer

Applies to: calcium carbonate / melatonin / valerian / vitamin e, patiromer

GENERALLY AVOID: Coadministration with nonabsorbable cation-donating preparations such as antacids and laxatives may reduce the therapeutic effect of cation-exchange resins and increase the risk of systemic alkalosis. The proposed mechanism involves binding of the cation to the resin, which can interfere with the resin's potassium exchange capability and prevent the cation from neutralizing bicarbonate ions in the intestine. Concomitant use of sodium polystyrene sulfonate and antacids containing calcium, magnesium, and/or aluminum has been reported to cause metabolic alkalosis in patients with end-stage renal disease and advanced stages of chronic kidney disease. Theoretically, the interaction may also occur with other cation-exchange resins that possess nonspecific cation-binding capabilities such as calcium polystyrene sulfonate or patiromer. Other serious adverse effects have also been reported. One patient with chronic hypocalcemia of renal failure developed alkalosis and grand mal seizure when given sodium polystyrene sulfonate with magnesium hydroxide as a laxative. Intestinal obstruction due to concretions of aluminum hydroxide has occurred in combination with sodium polystyrene sulfonate and morphine.

MANAGEMENT: Nonabsorbable calcium, magnesium, or aluminum preparations such as antacids and laxatives should generally be avoided in patients receiving oral cation-exchange resins.

References (8)
  1. Ziessman HA (1976) "Alkalosis and seizure due to a cation-exchange resin and magnesium hydroxide." South Med J, 69, p. 497-9
  2. Foresti V (1994) "Intestinal obstruction due to kayexalate in a patient concurrently treated with aluminum hydroxide and morphine sulfate." Clin Nephrol, 41, p. 252
  3. Baluarte HJ, Prebis J, Goldberg M, Gruskin AB (1978) "Metabolic alkalosis in an anephric child caused by the combined use of Kayexalate and Basaljel." J Pediatr, 92, p. 237-9
  4. Madias NE, Levey AS (1983) "Metabolic alkalosis due to absorption of "nonabsorbable" antacids." Am J Med, 74, p. 155-8
  5. (2001) "Product Information. Kayexalate (sodium polystyrene sulfonate)." Sanofi Winthrop Pharmaceuticals
  6. (2002) "Product Information. Resonium Calcium (calcium polystyrene sulfonate)." Sanofi-Synthelabo Canada Inc
  7. Dad T, Garimella PS, Strom JA (2017) "Quiz: An unusual case of metabolic alkalosis in a patient with CKD." Am J Kidney Dis, 69, A13-6
  8. Palmer BF (2020) "Potassium binders for hyperkalemia in chronic kidney disease - diet, renin-angiotensin-aldosterone system inhibitor therapy, and hemodialysis." Mayo Clin Proc, 95, p. 339-54
Moderate

melatonin valerian

Applies to: calcium carbonate / melatonin / valerian / vitamin e, calcium carbonate / melatonin / valerian / vitamin e

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (36)
  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc

Drug and food interactions

Moderate

calcium carbonate food

Applies to: calcium carbonate / melatonin / valerian / vitamin e

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References (6)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
Moderate

melatonin food

Applies to: calcium carbonate / melatonin / valerian / vitamin e

MONITOR: Oral caffeine may significantly increase the bioavailability of melatonin. The proposed mechanism is inhibition of CYP450 1A2 first-pass metabolism. After administration of melatonin 6 mg and caffeine 200 mg orally (approximately equivalent to 1 large cup of coffee) to 12 healthy subjects, the mean peak plasma concentration (Cmax) of melatonin increased by 137% and the area under the concentration-time curve (AUC) increased by 120%. The metabolic inhibition was greater in nonsmokers (n=6) than in smokers (n=6). The greatest effect was seen in subjects with the *1F/*1F genotype (n=7), whose melatonin Cmax increased by 202%. The half-life did not change significantly. The clinical significance of this interaction is unknown.

According to some authorities, alcohol may reduce the effect of melatonin on sleep. The mechanism of this interaction is not fully understood.

In addition, CYP450 1A2 inducers like cigarette smoking may reduce exogenous melatonin plasma levels. In a small clinical trial (n=8), habitual smokers had their melatonin plasma levels measured two times, each after a single oral dose of 25 mg of melatonin. They had smoked prior to the first measurement but had not smoked for 7 days prior to the second. Cigarette smoking significantly reduced melatonin plasma exposure (AUC) as compared to melatonin levels after 7 days of smoking abstinence (7.34 +/- 1.85 versus 21.07 +/- 7.28 nmol/L*h, respectively).

MANAGEMENT: Caution and monitoring are recommended if melatonin is used with inhibitors of CYP450 1A2 like caffeine or inducers of CYP450 1A2 like cigarette smoking. Consumption of alcohol should be avoided when taking melatonin.

References (3)
  1. Hartter S, Nordmark A, Rose DM, Bertilsson L, Tybring G, Laine K (2003) "Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity." Br J Clin Pharmacol, 56, p. 679-682
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Ursing C, Bahr CV, Brismar K, Rojdmark S (2005) "Influence of cigarette smoking on melatonin levels in man" Eur J Clin Pharmacol, 61, p. 197-201
Moderate

valerian food

Applies to: calcium carbonate / melatonin / valerian / vitamin e

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (4)
  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Moderate

patiromer food

Applies to: patiromer

ADJUST DOSING INTERVAL: Patiromer can bind to some orally administered drugs, which may decrease their gastrointestinal absorption and reduce their effectiveness. According to the manufacturer, out of 28 drugs that were tested in in vitro binding studies, 14 did not show an interaction with patiromer (acetylsalicylic acid, allopurinol, amoxicillin, apixaban, atorvastatin, cephalexin, digoxin, glipizide, lisinopril, phenytoin, riboflavin, rivaroxaban, spironolactone, and valsartan). Twelve of the 14 drugs that did show an in vitro interaction were subsequently tested in in vivo studies with healthy volunteers, which revealed no changes in systemic exposure when coadministered with patiromer (amlodipine, cinacalcet, clopidogrel, furosemide, lithium, metoprolol, trimethoprim, verapamil, and warfarin). Patiromer was found to decrease systemic exposure of coadministered ciprofloxacin, levothyroxine, and metformin. However, no significant interaction occurred when patiromer and these drugs were dosed 3 hours apart.

MANAGEMENT: Patiromer should be administered with food at least 3 hours before or 3 hours after other oral medications. Alternatives to patiromer or the other medications should be considered if adequate dosing separation is not possible. Otherwise, clinical response and/or blood levels should be monitored where possible.

References (1)
  1. (2015) "Product Information. Veltassa (patiromer)." Relypsa, Inc.

Therapeutic duplication warnings

No duplication warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Learn more

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.