Skip to main content

Drug Interaction Report

20 potential interactions and/or warnings found for the following 11 drugs:

Filter by interaction and/or warning

Interactions between your drugs

Moderate

clonazePAM omeprazole

Applies to: clonazepam, omeprazole

MONITOR: Omeprazole may increase the pharmacologic effects and serum levels of certain benzodiazepines via hepatic enzyme inhibition. Diazepam and triazolam are the only benzodiazepines that have been specifically studied in this regard.

MANAGEMENT: Patient should be observed for increased sedation. Reduced benzodiazepine dosage may be indicated, especially in the elderly. Benzodiazepines not metabolized via oxidation (i.e., lorazepam, oxazepam, temazepam) are not expected to interact and may be considered as alternatives.

References

  1. Andersson T, Cederberg C, Edvardsson G, et al. (1990) "Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole." Clin Pharmacol Ther, 47, p. 79-85
  2. Gugler R, Jensen JC (1985) "Omeprazole inhibits oxidative drug metabolism: studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro." Gastroenterology, 89, p. 1235-41
  3. Andersson T, Andren K, Cederberg C, Edvardsson G, Heggelund A, Lundborg P (1990) "Effect of omeprazole and cimetidine on plasma diazepam levels." Eur J Clin Pharmacol, 39, p. 51-4
  4. Shader RI (1993) "I recently saw a patient taking omeprazole for a duodenal ulcer who was wobbly and sedated by the small doses of diazepam that he had previously tolerated - how is this explained." J Clin Psychopharmacol, 13, p. 459
  5. Caraco Y, Tateishi T, Wood AJJ (1995) "Interethnic difference in omeprazole's inhibition of diazepam metabolism." Clin Pharmacol Ther, 58, p. 62-72
View all 5 references

Switch to consumer interaction data

Moderate

levothyroxine omeprazole

Applies to: Synthroid (levothyroxine), omeprazole

MONITOR: Concurrent administration of proton pump inhibitors (PPI) may decrease the oral bioavailability of levothyroxine. Pharmacologic effects of levothyroxine may be reduced. The mechanism of interaction is suspected to be PPI induced hypochlorhydria leading to reduced levothyroxine absorption since gastric acidity is an essential requirement for levothyroxine absorption. It is not known whether this interaction occurs with other thyroid hormone preparations.

MANAGEMENT: Caution is advised if levothyroxine is used concomitantly with proton pump inhibitors. Consider the alteration in gastric pH caused by the PPI. Some authorities recommend separating administration of PPI and levothyroxine by several hours, however there are no studies showing improved absorption when PPIs are administered separately from levothyroxine. If concomitant administration is necessary, consider monitoring TSH level and watching for clinical evidence of reduced levothyroxine effects. Patients should be advised to contact their physician if they experience symptoms of hypothyroidism, such as fatigue, cold intolerance, constipation, unexplained weight gain, depression, joint or muscle pain, thinning hair or hair loss, dry skin, hoarseness, and abnormal menstrual periods.

References

  1. (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."

Switch to consumer interaction data

Moderate

levothyroxine conjugated estrogens

Applies to: Synthroid (levothyroxine), Premarin (conjugated estrogens)

MONITOR: Estrogens may increase serum thyrotropin concentration, which could be harmful in patients with thyroid cancer receiving thyroxine for thyrotropin suppression or increase dosage requirements in patients with hypothyroidism receiving thyroxine for replacement therapy. Estrogens are known to increase serum thyroid-binding globulin concentration in a dose-dependent manner. Consequently, there may be a reduction in unbound, or free, thyroxine available for hormone activity, which, in turn, leads to an increase in serum thyrotropin concentration. Normally, thyroxine secretion can increase to compensate for this effect, but patients with hypothyroidism lack the mechanism to adapt. Limited evidence suggests that transdermal estrogen therapy may not affect thyroid-binding globulin concentrations; however, more data are required to confirm that.

MANAGEMENT: In patients treated with thyroxine, serum thyrotropin should be measured approximately 12 weeks after estrogen therapy is initiated, changed or discontinued, and the thyroxine dosage adjusted accordingly. Patients should be advised to contact their physician if clinical manifestations of hypothyroidism occur, such as fatigue, cold intolerance, constipation, unexplained weight gain, depression, joint or muscle pain, thinning hair or hair loss, dry skin, hoarseness, and abnormal menstrual periods.

References

  1. (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
  2. Chetkowski RJ, Meldrum DR, Steingold KA, et al. (1986) "Biologic effects of transdermal estradiol." N Engl J Med, 314, p. 1615-20
  3. Arafah BM (2001) "Increased need for thyroxine in women with hypothyroidism during estrogen therapy." N Engl J Med, 344, p. 1743-9
  4. Utiger RD (2001) "Estrogen, thyroxine binding in serum, and thyroxine therapy." N Engl J Med, 344, p. 1784-5
  5. Irving S, Vadiveloo T, Leese GP (2014) "Drugs that interact with levothyroxine; an observational study from the Thyroid Epidemiology, Audit and Research Study (TEARS)." Clin Endocrinol (Oxf)
  6. (2021) "Product Information. Nextstellis (drospirenone-estetrol)." Mayne Pharma
View all 6 references

Switch to consumer interaction data

Moderate

clonazePAM zolpidem

Applies to: clonazepam, Ambien (zolpidem)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

famotidine venlafaxine

Applies to: famotidine, venlafaxine

MONITOR: Famotidine may cause QTc prolongation. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. According to the manufacturer, prolongation of the QT interval has been reported very rarely in patients with impaired renal function whose dose/dosing interval of famotidine may not have been adjusted appropriately. In general, the risk of an individual agent or a combination of these agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Caution and clinical monitoring are recommended if famotidine is used in combination with other drugs that can prolong the QT interval. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. (2002) "Product Information. Pepcid (famotidine)." Merck & Co., Inc
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."

Switch to consumer interaction data

Moderate

clonazePAM venlafaxine

Applies to: clonazepam, venlafaxine

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

zolpidem venlafaxine

Applies to: Ambien (zolpidem), venlafaxine

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

clonazePAM cetirizine

Applies to: clonazepam, cetirizine

MONITOR: Concurrent use of cetirizine or levocetirizine with alcohol or other agents that exhibit central nervous system (CNS) depressant effects may result in additive impairment of mental alertness and performance. Several studies have shown no effect of racemic cetirizine on cognitive function, motor performance, or sleep latency as indicated by objective measurements. However, there have been reports of somnolence, fatigue, and asthenia in some patients treated with cetirizine or levocetirizine in clinical trials.

MANAGEMENT: Concomitant use of cetirizine or levocetirizine with alcohol or other CNS depressants should generally be avoided if possible. In the event that they are used together, patients should be counseled against driving, operating machinery, or engaging in potentially hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. (2001) "Product Information. Zyrtec (cetirizine)." Pfizer U.S. Pharmaceuticals
  2. (2007) "Product Information. Xyzal (levocetirizine)." UCB Pharma Inc

Switch to consumer interaction data

Moderate

zolpidem cetirizine

Applies to: Ambien (zolpidem), cetirizine

MONITOR: Concurrent use of cetirizine or levocetirizine with alcohol or other agents that exhibit central nervous system (CNS) depressant effects may result in additive impairment of mental alertness and performance. Several studies have shown no effect of racemic cetirizine on cognitive function, motor performance, or sleep latency as indicated by objective measurements. However, there have been reports of somnolence, fatigue, and asthenia in some patients treated with cetirizine or levocetirizine in clinical trials.

MANAGEMENT: Concomitant use of cetirizine or levocetirizine with alcohol or other CNS depressants should generally be avoided if possible. In the event that they are used together, patients should be counseled against driving, operating machinery, or engaging in potentially hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. (2001) "Product Information. Zyrtec (cetirizine)." Pfizer U.S. Pharmaceuticals
  2. (2007) "Product Information. Xyzal (levocetirizine)." UCB Pharma Inc

Switch to consumer interaction data

Moderate

venlafaxine cetirizine

Applies to: venlafaxine, cetirizine

MONITOR: Concurrent use of cetirizine or levocetirizine with alcohol or other agents that exhibit central nervous system (CNS) depressant effects may result in additive impairment of mental alertness and performance. Several studies have shown no effect of racemic cetirizine on cognitive function, motor performance, or sleep latency as indicated by objective measurements. However, there have been reports of somnolence, fatigue, and asthenia in some patients treated with cetirizine or levocetirizine in clinical trials.

MANAGEMENT: Concomitant use of cetirizine or levocetirizine with alcohol or other CNS depressants should generally be avoided if possible. In the event that they are used together, patients should be counseled against driving, operating machinery, or engaging in potentially hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. (2001) "Product Information. Zyrtec (cetirizine)." Pfizer U.S. Pharmaceuticals
  2. (2007) "Product Information. Xyzal (levocetirizine)." UCB Pharma Inc

Switch to consumer interaction data

Moderate

venlafaxine polyethylene glycol 3350

Applies to: venlafaxine, MiraLAX (polyethylene glycol 3350)

MONITOR: Bowel cleansing as well as overuse of certain laxatives may cause electrolyte loss and increase the risk of torsade de pointes ventricular arrhythmia in patients treated with drugs that prolong the QT interval. Electrolyte disturbances including hypokalemia and hypomagnesemia have been reported with laxative abuse and are known risk factors for torsade de pointes associated with QT interval prolongation.

MANAGEMENT: Patients treated with drugs that prolong the QT interval should exercise caution when self-medicating with laxatives. The recommended dosage and duration of use should not be exceeded. Patients treated with lactulose for more than six months should be monitored periodically for electrolyte imbalance. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. Chin RL (1998) "Laxative-induced hypokalemia." Ann Emerg Med, 32, p. 517-8
  2. Muller-Lissner SA (1993) "Adverse effects of laxatives: fact and fiction." Pharmacology, 47, p. 138-45
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  5. Cerner Multum, Inc. "Australian Product Information."
  6. Schaefer DC, Cheskin LJ (1998) "Constipation in the elderly." Am Fam Physician, 58, p. 907-14
View all 6 references

Switch to consumer interaction data

No other interactions were found between your selected drugs. However, this does not necessarily mean no other interactions exist. Always consult your healthcare provider.

Drug and food interactions

Moderate

levothyroxine food

Applies to: Synthroid (levothyroxine)

ADJUST DOSING INTERVAL: Consumption of certain foods as well as the timing of meals relative to dosing may affect the oral absorption of T4 thyroid hormone (i.e., levothyroxine). T4 oral absorption is increased by fasting and decreased by foods such as soybean flour (e.g., infant formula), cotton seed meal, walnuts, dietary fiber, calcium, and calcium fortified juices. Grapefruit or grapefruit products may delay the absorption of T4 thyroid hormone and reduce its bioavailability. The mechanism of this interaction is not fully understood.

MANAGEMENT: Some manufacturers recommend administering oral T4 as a single daily dose, on an empty stomach, one-half to one hour before breakfast. In general, oral preparations containing T4 thyroid hormone should be administered on a consistent schedule with regard to time of day and relation to meals to avoid large fluctuations in serum levels. Foods that may affect T4 absorption should be avoided within several hours of dosing if possible. Consult local guidelines for the administration of T4 in patients receiving enteral feeding.

References

  1. (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
  2. (2022) "Product Information. Armour Thyroid (thyroid desiccated)." Forest Pharmaceuticals
  3. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67

Switch to consumer interaction data

Moderate

zolpidem food

Applies to: Ambien (zolpidem)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of zolpidem. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

ADJUST DOSING INTERVAL: Administration of zolpidem with food may delay the onset of hypnotic effects. In 30 healthy subjects, administration of zolpidem 20 minutes after a meal resulted in decreased mean peak plasma drug concentration (Cmax) and area under the concentration-time curve (AUC) by 25% and 15%, respectively, compared to fasting. The time to reach peak plasma drug concentration (Tmax) was prolonged by 60%, from 1.4 to 2.2 hours.

MANAGEMENT: Patients receiving zolpidem should be advised to avoid the consumption of alcohol. For faster sleep onset, zolpidem should not be administered with or immediately after a meal.

References

  1. (2001) "Product Information. Ambien (zolpidem)." sanofi-aventis
  2. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84

Switch to consumer interaction data

Moderate

venlafaxine food

Applies to: venlafaxine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

cetirizine food

Applies to: cetirizine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

clonazePAM food

Applies to: clonazepam

GENERALLY AVOID: Acute ethanol ingestion may potentiate the CNS effects of many benzodiazepines. Tolerance may develop with chronic ethanol use. The mechanism may be decreased clearance of the benzodiazepines because of CYP450 hepatic enzyme inhibition. Also, it has been suggested that the cognitive deficits induced by benzodiazepines may be increased in patients who chronically consume large amounts of alcohol.

MANAGEMENT: Patients should be advised to avoid alcohol during benzodiazepine therapy.

References

  1. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  2. Whiting B, Lawrence JR, Skellern GG, Meier J (1979) "Effect of acute alcohol intoxication on the metabolism and plasma kinetics of chlordiazepoxide." Br J Clin Pharmacol, 7, p. 95-100
  3. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  4. Juhl RP, Van Thiel DH, Dittert LW, Smith RB (1984) "Alprazolam pharmacokinetics in alcoholic liver disease." J Clin Pharmacol, 24, p. 113-9
  5. Ochs HR, Greenblatt DJ, Arendt RM, Hubbel W, Shader RI (1984) "Pharmacokinetic noninteraction of triazolam and ethanol." J Clin Psychopharmacol, 4, p. 106-7
  6. Staak M, Raff G, Nusser W (1979) "Pharmacopsychological investigations concerning the combined effects of dipotassium clorazepate and ethanol." Int J Clin Pharmacol Biopharm, 17, p. 205-12
  7. Nichols JM, Martin F, Kirkby KC (1993) "A comparison of the effect of lorazepam on memory in heavy and low social drinkers." Psychopharmacology (Berl), 112, p. 475-82
View all 7 references

Switch to consumer interaction data

Moderate

levothyroxine food

Applies to: Synthroid (levothyroxine)

ADJUST DOSING INTERVAL: Concurrent administration of calcium-containing products may decrease the oral bioavailability of levothyroxine by one-third in some patients. Pharmacologic effects of levothyroxine may be reduced. The exact mechanism of interaction is unknown but may involve nonspecific adsorption of levothyroxine to calcium at acidic pH levels, resulting in an insoluble complex that is poorly absorbed from the gastrointestinal tract. In one study, 20 patients with hypothyroidism who were taking a stable long-term regimen of levothyroxine demonstrated modest but significant decreases in mean free and total thyroxine (T4) levels as well as a corresponding increase in mean thyrotropin (thyroid-stimulating hormone, or TSH) level following the addition of calcium carbonate (1200 mg/day of elemental calcium) for 3 months. Four patients had serum TSH levels that were higher than the normal range. Both T4 and TSH levels returned to near-baseline 2 months after discontinuation of calcium, which further supported the likelihood of an interaction. In addition, there have been case reports suggesting decreased efficacy of levothyroxine during calcium coadministration. It is not known whether this interaction occurs with other thyroid hormone preparations.

MANAGEMENT: Some experts recommend separating the times of administration of levothyroxine and calcium-containing preparations by at least 4 hours. Monitoring of serum TSH levels is recommended. Patients with gastrointestinal or malabsorption disorders may be at a greater risk of developing clinical or subclinical hypothyroidism due to this interaction.

References

  1. Schneyer CR (1998) "Calcium carbonate and reduction of levothyroxine efficacy." JAMA, 279, p. 750
  2. Singh N, Singh PN, Hershman JM (2000) "Effect of calcium carbonate on the absorption of levothyroxine." JAMA, 283, p. 2822-5
  3. Csako G, McGriff NJ, Rotman-Pikielny P, Sarlis NJ, Pucino F (2001) "Exaggerated levothyroxine malabsorption due to calcium carbonate supplementation in gastrointestinal disorders." Ann Pharmacother, 35, p. 1578-83
  4. Neafsey PJ (2004) "Levothyroxine and calcium interaction: timing is everything." Home Healthc Nurse, 22, p. 338-9
View all 4 references

Switch to consumer interaction data

Minor

conjugated estrogens food

Applies to: Premarin (conjugated estrogens)

Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.

References

  1. Weber A, Jager R, Borner A, et al. (1996) "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception, 53, p. 41-7
  2. Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T (1995) "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet, 20, p. 219-24

Switch to consumer interaction data

Minor

famotidine food

Applies to: famotidine

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References

  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM (1990) "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol, 38, p. 165-9

Switch to consumer interaction data

Therapeutic duplication warnings

Therapeutic duplication is the use of more than one medicine from the same drug category or therapeutic class to treat the same condition. This can be intentional in cases where drugs with similar actions are used together for demonstrated therapeutic benefit. It can also be unintentional in cases where a patient has been treated by more than one doctor, or had prescriptions filled at more than one pharmacy, and can have potentially adverse consequences.

Duplication

Acid suppressant agents

Therapeutic duplication

The recommended maximum number of medicines in the 'acid suppressant agents' category to be taken concurrently is usually one. Your list includes two medicines belonging to the 'acid suppressant agents' category:

  • omeprazole
  • famotidine

Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Learn more

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.