Skip to main content

Drug Interactions between Octocaine 100 and Rifater

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

rifAMPin isoniazid

Applies to: Rifater (isoniazid / pyrazinamide / rifampin) and Rifater (isoniazid / pyrazinamide / rifampin)

Using isoniazid together with rifAMPin can cause serious side effects that may affect your liver. Call your doctor immediately if you experience a fever, chills, joint pain or swelling, excessive tiredness or weakness, unusual bleeding or bruising, skin rash or itching, loss of appetite, nausea, vomiting, or yellowing of the skin or the whites of your eyes. If your doctor does prescribe these medications together, you may need a dose adjustment or special tests to safely take both medications. It is important to tell your doctor about all other medications you use, including vitamins and herbs. Do not stop using any medications without first talking to your doctor.

Switch to professional interaction data

Major

rifAMPin pyrazinamide

Applies to: Rifater (isoniazid / pyrazinamide / rifampin) and Rifater (isoniazid / pyrazinamide / rifampin)

Ask your doctor before using rifAMPin together with pyrazinamide. This can cause damage to the liver. Liver function and drug levels in the blood may be monitored with blood tests during treatment. Call your doctor if you experience fever, rash, loss of appetite, nausea, vomiting, fatigue, right upper abdominal pain, dark urine, and jaundice. You may need a dose adjustment or special tests to safely take both medications. It is important to tell your doctor about all other medications you use, including vitamins and herbs. Do not stop using any medications without first talking to your doctor.

Switch to professional interaction data

Moderate

isoniazid pyrazinamide

Applies to: Rifater (isoniazid / pyrazinamide / rifampin) and Rifater (isoniazid / pyrazinamide / rifampin)

Consumer information for this interaction is not currently available.

MONITOR: Coadministration of isoniazid (INH) with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of INH's acetylation is genetically determined and generally classified as slow or rapid, with slow acetylators characterized by a relative lack of N-acetyltransferase. While the rate of acetylation does not significantly alter INH's effectiveness, it can lead to higher blood levels of INH and an increase of adverse reactions. In addition, INH is an in vitro inhibitor of several CYP450 isoenzymes (2C9, 2C19, 2E1, and 3A4). Coadministration of hepatotoxic drugs eliminated by one or more of these pathways may lead to elevated concentrations of the concomitant drug and increase the risk of hepatotoxicity. Most of the INH-associated hepatitis cases occur during the first 3 months of treatment, but may occur at any time and have been reported to be severe or even fatal. INH is reported in medical literature to cause clinically apparent acute liver injury with jaundice in 0.5% to 1% and fatality in 0.05% to 0.1% of recipients. A United States Public Health Service Surveillance Study of 13,838 people taking INH reported 8 deaths among 174 cases of hepatitis. Risk factors for INH related liver injury may include: age > 35 years, female gender, postpartum period, daily consumption of alcohol, injection drug user, slow acetylator phenotype, malnutrition, HIV infection, pre-existing liver disease, extra-pulmonary tuberculosis, and concomitant use of hepatotoxic medications. Clinical data have been reported with concurrent use of acetaminophen, alcohol, carbamazepine, phenobarbital, phenytoin, and rifampin.

MANAGEMENT: Coadministration of isoniazid (INH) with other hepatotoxic medications should be done with caution and close clinical monitoring. Some authorities recommend avoiding concurrent use when possible. If coadministration is needed, baseline and monthly liver function testing as well as monthly interviewing of the patient to check for signs and symptoms of adverse effects is recommended. More frequent testing may be advisable in patients at increased risk of INH-associated liver injury. Some manufacturers of INH recommend strongly considering its discontinuation if serum aminotransferase concentrations (AST or SGOT, ALT or SGPT) exceed 3 to 5 times the upper limit of normal. Patients should be counseled to immediately report signs or symptoms consistent with liver damage and notified that prodromal symptoms usually consist of fatigue, weakness, malaise, anorexia, nausea, and/or vomiting. If hepatic damage is suspected, INH should be immediately discontinued as continuation may lead to more severe damage. If hepatitis is attributed to INH in patients with tuberculosis, alternative drugs should be used. However, if INH must be used, it should only be resumed after the patient's symptoms and laboratory abnormalities have cleared. It should also be restarted in very small, gradually increasing doses and immediately withdrawn if there is any indication of recurrent liver involvement. Consultation with product labeling and relevant guidelines is advisable.

References

  1. "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India) 2 (2021):
  2. "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC. (2023):
  3. "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd (2023):
  4. "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB (2023):
  5. Saukkonen JJ, Cohn DL, Jasmer RM, et al. "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med 174 (2006): 935-52
  6. Bouazzi OE, Hammi S, Bourkadi JE, et al. "First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/" (2024):
  7. Metushi I, Uetrecht J, Phillips E "Mechanism of isoniazid-induced hepatotoxicity: then and now." Br J Clin Pharmacol 81 (2016): 1030-6
  8. National Institute of Diabetes and Digestive and Kidney Diseases "LiverTox: clinical and research information on drug-induced liver injury [internet]. Isoniazid. https://www.ncbi.nlm.nih.gov/books/NBK548754/" (2024):
  9. "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc. (2021):
View all 9 references
Moderate

isoniazid EPINEPHrine

Applies to: Rifater (isoniazid / pyrazinamide / rifampin) and Octocaine 100 (epinephrine / lidocaine)

Consumer information for this interaction is not currently available.

MONITOR: While monoamine oxidase inhibitors (MAOIs) reportedly do not significantly enhance the hypertensive effects of direct-acting sympathomimetic amines, caution is nevertheless advised when these agents are used together. Some cases of increased heart rate and blood pressure have been reported.

MANAGEMENT: Blood pressure and heart rate should be monitored during coadministration of direct-acting sympathomimetic agents with MAOIs or other agents that possess MAOI activity (e.g., furazolidone, methylene blue, procarbazine).

References

  1. Smookler S, Barmudez AJ "Hypertensive crisis resulting from an MAO inhibitor and an over-the counter appetite suppressant." Ann Emerg Med 11 (1982): 482-4
  2. Pettinger WA, Soyangco FG, Oates JA "Inhibition of monoamine oxidase in man by furazolidone." Clin Pharmacol Ther 9 (1968): 442-7
  3. Schulz R, Antonin KH, Hoffmann E, et al. "Tyramine kinetics and pressor sensitivity during monoamine oxidase inhibition by selegiline." Clin Pharmacol Ther 46 (1989): 528-36
  4. Elis J, Laurence DR, Mattie H, Prichard BN "Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure." Br Med J 2 (1967): 75-8
  5. Goldberg LI "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA 190 (1964): 456-62
  6. Wright SP "Hazards with monoamine-oxidase inhibitors: a persistent problem." Lancet 1 (1978): 284-5
  7. Boakes AJ, Laurence DR, Teoh PC, Barar FS, Benedikter LT, Pritchard BN "Interactions between sympathomimetic amines and antidepressant agents in man." Br Med J 1 (1973): 311-5
  8. Goulet JP, Perusse R, Turcotte JY "Contraindications to vasoconstrictors in dentistry: Part III. Pharmacologic interactions." Oral Surg Oral Med Oral Pathol 74 (1992): 692-7
  9. Sjoerdsma A "Catecholamine-drug interactions in man." Pharmacol Rev 18 (1966): 673-83
  10. Ban TA "Drug interactions with psychoactive drugs." Dis Nerv Syst 36 (1975): 164-6
  11. Darcy PF, Griffin JP "Interactions with drugs used in the treatment of depressive illness." Adverse Drug React Toxicol Rev 14 (1995): 211-31
  12. De Vita VT, Hahn MA, Oliverio VT "Monoamine oxidase inhibition by a new carcinostatic agent, n-isopropyl-a-(2-methylhydrazino)-p-toluamide (MIH). (30590)." Proc Soc Exp Biol Med 120 (1965): 561-5
  13. Cusson JR, Goldenberg E, Larochelle P "Effect of a novel monoamine-oxidase inhibitor, moclobemide on the sensitivity to intravenous tyramine and norepinephrine in humans." J Clin Pharmacol 31 (1991): 462-7
  14. Thompson DS, Sweet RA, Marzula K, Peredes JC "Lack of interaction of monoamine oxidase inhibitors and epinephrine in an older patient." J Clin Psychopharmacol 17 (1997): 322-3
View all 14 references
Minor

rifAMPin lidocaine

Applies to: Rifater (isoniazid / pyrazinamide / rifampin) and Octocaine 100 (epinephrine / lidocaine)

Information for this minor interaction is available on the professional version.

Drug and food interactions

Moderate

rifAMPin food

Applies to: Rifater (isoniazid / pyrazinamide / rifampin)

Consumer information for this interaction is not currently available.

GENERALLY AVOID: Concurrent use of rifampin in patients who ingest alcohol daily may result in an increased incidence of hepatotoxicity. The increase in hepatotoxicity may be due to an additive risk as both alcohol and rifampin are individually associated with this adverse reaction. However, the exact mechanism has not been established.

ADJUST DOSING INTERVAL: Administration with food may reduce oral rifampin absorption, increasing the risk of therapeutic failure or resistance. In a randomized, four-period crossover phase I study of 14 healthy male and female volunteers, the pharmacokinetics of single dose rifampin 600 mg were evaluated under fasting conditions and with a high-fat meal. Researchers observed that administration of rifampin with a high-fat meal reduced rifampin peak plasma concentration (Cmax) by 36%, nearly doubled the time to reach peak plasma concentration (Tmax) but reduced overall exposure (AUC) by only 6%.

MANAGEMENT: The manufacturer of oral forms of rifampin recommends administration on an empty stomach, 30 minutes before or 2 hours after meals. Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and rifampin concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with rifampin.

References

  1. "Product Information. Rifampin (rifAMPin)." Akorn Inc (2022):
  2. "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc (2022):
  3. "Product Information. Rifadin (rifampicin)." Sanofi (2023):
  4. "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd (2024):
  5. Peloquin CA, Namdar R, Singleton MD, Nix DE "Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids https://pubmed.ncbi.nlm.nih.gov/9925057/" (2024):
  6. "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc. (2019):
View all 6 references
Moderate

lidocaine food

Applies to: Octocaine 100 (epinephrine / lidocaine)

Consumer information for this interaction is not currently available.

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References

  1. Huet PM, LeLorier J "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther 28 (1980): 208-15
  2. "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc. (2024):
  3. "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation (2015):
  4. "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd (2022):
  5. "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd (2022):
  6. Isohanni MH, Neuvonen PJ, Olkkola KT "Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/" (2024):
  7. Isohanni MH, Neuvonen PJ, Olkkola KT "Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/" (2024):
View all 7 references
Moderate

isoniazid food

Applies to: Rifater (isoniazid / pyrazinamide / rifampin)

Food decreases the levels of isoniazid in your body. Take isoniazid on an empty stomach at least 1 hour before or 2 hours after a meal. This will make it easier for your body to absorb the medication. If nausea occurs, ask your doctor if you can take isoniazid with food. Avoid alcohol while taking isoniazid. Alcohol may increase the risk of damage to the liver during isoniazid treatment. Alcohol can also cause isoniazid side effects to get worse. Contact your doctor if you experience flushing, chills, headache, nausea, vomiting, and diarrhea.

Switch to professional interaction data

Moderate

EPINEPHrine food

Applies to: Octocaine 100 (epinephrine / lidocaine)

Consumer information for this interaction is not currently available.

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.