Buspirone Hydrochloride

Pronunciation

Class: Anxiolytics, Sedatives, and Hypnotics; Miscellaneous
VA Class: CN309
Chemical Name: 8-[4-[4-(2-Pyrimidinyl)-1-piperazinyl] butyl]-8-azaspiro[4.5]decane-7,9-dione monohydrochloride
Molecular Formula: C21H31N5O2•HCl
CAS Number: 33386-08-2
Brands: BuSpar, BuSpar Dividose

Introduction

Anxiolytic agent;2 4 70 89 112 131 132 133 structurally and pharmacologically different than benzodiazepines, barbiturates, and other available anxiolytic agents.1 2 4 6 70 78 112 132 133 187

Uses for Buspirone Hydrochloride

Anxiety Disorders

Management of anxiety disorders (anxiety and phobic neuroses)1 2 5 36 37 38 39 40 41 42 45 72 81 83 88 95 107 109 123 189 191 and short-term relief of symptoms of anxiety.1 2 47 72 123

Slideshow: 18 Herbal Supplements with Risky Drug Interactions

Herbal and Dietary Supplements Deserve Your Attention

Efficacy generally comparable to that of benzodiazepines (e.g., alprazolam,45 83 clorazepate,40 42 83 184 diazepam, 36 37 38 39 40 41 72 81 83 88 107 109 130 160 lorazepam) in the management of generalized anxiety disorder (GAD).45 83

Preferred by some clinicians for the management of anxiety disorders in patients with a history of aggression or in whom disinhibition has occurred during benzodiazepine therapy.154 185 186

Buspirone Hydrochloride Dosage and Administration

General

  • Slower onset of action than some anxiolytics (e.g., diazepam).36 38 39 80 82 87 112 122 184 Optimum therapeutic effect usually requires at least 3–4 weeks39 41 123 193 and occasionally up to 4–6 weeks of therapy.87

  • Periodically reassess need for continued therapy.1 114

Administration

Oral Administration

Administer orally in a consistent manner, either always with or always without food.1 (See Food under Pharmacokinetics.)

The 15- and 30-mg tablets (Dividose tablets) are scored to be broken in 2 halves (each providing a dose of 7.5 and 15 mg, respectively) or in 3 thirds (each providing a dose of 5 and 10 mg, respectively).1

Dosage

Available as buspirone hydrochloride; dosage is expressed in terms of the salt.1

Adults

Anxiety Disorders
Oral

Initially, 10–15 mg daily in 2 or 3 divided doses.1 2 37 38 41 45 47 49 72 83 123 191 193 Increase dosage in increments of 5 mg daily every 2–4 days according to individual response and tolerance.1 2 5 37 38 41 72 83 123 Maintenance, 15–30 mg daily in 2 or 3 divided doses.1 37 38 39 40 41 42 45 47 48 51 59 114 123 191

Reduced dosage recommended in patients receiving concomitant therapy with potent CYP3A4 inhibitor.1 (See Drugs Affecting Hepatic Microsomal Enzymes under Interactions.)

Prescribing Limits

Adults

Maximum 60 mg daily.1 2 123

Special Populations

Hepatic Impairment

Prolonged elimination.1 Consider dosage reduction.1 34 110 112 Manufacturer states that use in patients with severe hepatic impairment is not recommended.1

Renal Impairment

Some clinicians recommend that dosage be reduced by 25–50% in anuric patients.104 However, other clinicians state that dosage recommendations cannot be made for patients with renal impairment due to variability in plasma buspirone concentrations.204 205 (See Absorption under Pharmacokinetics.) Manufacturer states that use in patients with severe renal impairment is not recommended.1

Cautions for Buspirone Hydrochloride

Contraindications

  • Known hypersensitivity to buspirone hydrochloride.1 2

Warnings/Precautions

Warnings

MAO Inhibitors

Avoid concomitant use.1 2 63 (See Specific Drugs under Interactions.)

Psychiatric Indications

No established antipsychotic efficacy at usual dosages;1 2 51 61 62 70 80 83 84 85 86 87 88 89 90 100 112 122 should not be used in place of appropriate antipsychotic therapy.1 2

General Precautions

CNS Effects

Generally does not produce substantial impairment of cognitive or psychomotor function at usual dosages; however, CNS effects show interindividual variation and may not be predictable.1 2

Prudent to avoid concomitant use with alcohol.1 2 (See Specific Drugs under Interactions.)

Benzodiazepine or Sedative/Hypnotic Withdrawal

No cross-tolerance with benzodiazepines or other sedative/hypnotic drugs; will not prevent symptoms of withdrawal following cessation of such therapy.1 2 6 39 44 60 70 71 86 124 Withdraw therapy with such drugs gradually in patients being switched to buspirone, particularly following prolonged or relatively high-dose therapy.1 2 39 86

Dopaminergic Effects

Potential for causing changes in dopamine-mediated neurologic function (e.g., dystonia, parkinsonian-like manifestations, akathisia, tardive dyskinesia) not fully elucidated.1 186

Specific Populations

Pregnancy

Category B.1

Lactation

Buspirone and its metabolites are distributed into milk in rats.1 Avoid whenever clinically possible.1

Pediatric Use

Safety and efficacy not established in children <18 years of age.1 Has been used in pediatric patients 6–17 years of age with GAD without unusual adverse effects; however, dosage of 7.5–30 mg twice daily for 6 weeks was no more effective than placebo.1

Geriatric Use

No substantial differences in safety, efficacy, or phamacokinetic profile relative to younger adults; however, increased sensitivity cannot be ruled out.1

Hepatic Impairment

Prolonged elimination.1 Use with caution.1 34 110 112

Manufacturer states that use in patients with severe hepatic impairment is not recommended.1

Renal Impairment

Decreased clearance.1 Use with caution.1 34 104 112 Need for dosage adjustment not fully elucidated. (See Renal Impairment under Dosage and Administration.)34 104 112

Manufacturer states that use in patients with severe renal impairment is not recommended.1

Common Adverse Effects

Dizziness, nausea, headache, nervousness, drowsiness, light-headedness, excitement.1 2 5 36 37 38 42 45 58 61 62 89 114 123 130 191

Interactions for Buspirone Hydrochloride

Metabolized by CYP3A4.1 4 5 15 31 32 34 64 112 125

Drugs Affecting Hepatic Microsomal Enzymes

Possible pharmacokinetic interaction (increased plasma buspirone concentrations) with CYP3A4 inhibitors.1 Low buspirone dosage (i.e., 2.5 mg once or twice daily) recommended in patients receiving potent CYP3A4 inhibitor; base subsequent adjustments of buspirone and CYP3A4 inhibitor dosage on clinical assessment.1

Possible pharmacokinetic interaction (decreased plasma buspirone concentrations) with CYP3A4 inducers.1 May require dosage adjustment to maintain anxiolytic effect.1

Protein-bound Drugs

Possible displacement from binding sites of buspirone or other protein-bound drugs.1 2 34 94

One report of increased prothrombin time when buspirone was added to a regimen of warfarin, phenytoin, phenobarbital, digoxin, and levothyroxine (Synthroid); clinical importance unknown.1

Specific Drugs and Foods

Drug or Food

Interaction

Comments

Alcohol

Does not appear to alter blood alcohol concentrations50 51 73 or substantially potentiate alcohol-induced impairment of psychomotor and cognitive performance2 5 10 34 48 50 51 55 73 74 76 90 93 105 112

Prudent to avoid concomitant use1

Amitriptyline

No interaction reported1 2 34 59

Cimetidine

Possible decrease in buspirone clearance 1 119 120 204

Clinical importance not established1

CNS depressants (e.g., analgesics, antihistamines, sedative/hypnotics including benzodiazepines)

Possible CNS depression, although few interactions reported to date2 5 34 48 63 76 81 91 93 112 123 129

Use with caution1 105

Diltiazem

Increased plasma buspirone concentrations1

Buspirone dosage adjustment may be necessary1

Erythromycin

Increased plasma buspirone concentrations1 204 and increased incidence of adverse effects attributable to buspirone1

Decrease buspirone dosage (e.g., 2.5 mg twice daily); base subsequent adjustments of buspirone and erythromycin dosage on clinical assessment1

Grapefruit juice

Increased plasma buspirone concentrations1

Avoid drinking large amounts of grapefruit juice1

Haloperidol

Increased serum haloperidol concentrations2 97

Clinical importance not established1

Itraconazole

Increased plasma buspirone concentrations1 204 and increased incidence of adverse effects attributable to buspirone1

Decrease buspirone dosage (e.g., 2.5 mg daily); base subsequent adjustments of buspirone and itraconazole dosage on clinical assessment1

MAO inhibitors (e.g., tranylcypromine)

Increased blood pressure;1 2 63 196 197 possible contribution to a fatal case of serotonin syndrome when used concomitantly with fluoxetine and tranylcypromine201 202

Do not use concomitantly;1 2 63 196 197 allow 10 days between discontinuance of MAO inhibitor and administration of buspirone196 197

Nefazodone

Marked increase in plasma buspirone concentration; slight increase in concentrations of nefazodone and its metabolite1

Use with caution; decrease buspirone dosage (e.g., 2.5 mg daily); base subsequent adjustments of buspirone and nefazodone dosage on clinical assessment1

Rifampin

Decreased plasma buspirone concentrations1

Adjust buspirone dosage as necessary to maintain anxiolytic effect1

Trazodone

Possible elevation of serum ALT1 2

Verapamil

Increased plasma buspirone concentrations1

Buspirone dosage adjustment may be necessary1

Buspirone Hydrochloride Pharmacokinetics

Absorption

Bioavailability

Rapidly1 2 4 5 29 34 64 88 and almost completely absorbed following oral administration.2 34 64 112 116 Undergoes extensive first-pass metabolism in the liver;1 2 4 31 34 64 112 116 only about 4% of a dose reaches systemic circulation unchanged.2 31 34 104 112 116

Peak plasma concentrations occur within 40–90 minutes following oral administration.1 2 4 29 31 34 64 65 115

Onset

Anxiolytic activity may be apparent within the first 2 weeks,38 123 but optimum therapeutic effect usually requires at least 3–4 weeks39 41 123 193 and occasionally up to 4–6 weeks.87

Food

Food may delay absorption, thereby decreasing the extent of presystemic clearance1 2 34 and increasing the amount of unchanged buspirone reaching systemic circulation.1 2 5 30 34

Distribution

Extent

Extensively distributed into body tissues in animals.112 127

Buspirone and metabolites are distributed into milk in animals;1 123 extent of distribution into human milk is unknown.1 123 185

Plasma Protein Binding

Approximately 86–95%1 2 34 104 203 (mainly albumin; α1-acid glycoprotein to a lesser extent).34 35

Elimination

Metabolism

Extensively metabolized in the liver, mainly via oxidation by CYP3A4.1 4 5 15 31 32 34 64 112 125

In animals, the major active metabolite (1-pyrimidinylpiperazine)1 5 15 31 32 33 34 112 125 has about 20–25% of the anxiolytic activity of buspirone but is present in the brain in concentrations up to 15-to 30-fold greater than those of unchanged drug.1 2 34 112 125 129 Contribution to the drug’s effects in humans is not fully elucidated.2 5 15

Elimination Route

Excreted principally in urine and to a lesser extent in feces;1 2 34 112 excreted mainly as metabolites.2 5 31 34 64 104 112

Half-life

2–4 hours.1 2 4 15 29 31 34 65 104 110 112 115 116

Special Populations

Elimination half-life may be prolonged in patients with renal impairment, particularly in those with anuria,34 104 and in patients with liver impairment, including those with cirrhosis.1 34 110 112

Stability

Storage

Oral

Tablets

Tight, light-resistant containers at ≤30°C.1 185

Actions

Advice to Patients

  • Potential for drug to impair mental alertness or physical coordination; avoid driving or operating machinery until effects on individual are known.1

  • Importance of taking buspirone in a consistent manner, either always with or always without food.1

  • Importance of not drinking large quantities of grapefruit juice.1

  • Symptomatic relief may occur within 2 weeks,38 123 but optimum effect usually requires at least 3–4 weeks39 41 123 193 and occasionally 4–6 weeks of therapy.87

  • Importance of informing clinicians of existing or contemplated concomitant therapy, including prescription and OTC drugs, and alcohol consumption.1 Prudent to avoid alcohol-containing beverages or products.1

  • Importance of women informing clinicians if they are or plan to become pregnant or plan to breast-feed.1

  • Importance of informing patients of other important precautionary information. (See Contraindications and also Warnings/Precautions under Cautions.)1

Preparations

Excipients in commercially available drug preparations may have clinically important effects in some individuals; consult specific product labeling for details.

* available from one or more manufacturer, distributor, and/or repackager by generic (nonproprietary) name

Buspirone Hydrochloride

Routes

Dosage Forms

Strengths

Brand Names

Manufacturer

Oral

Tablets

5 mg*

BuSpar (scored)

Bristol-Myers Squibb

Buspirone Hydrochloride (scored)

Aegis, Ethex, Mylan, Par, Sandoz, Teva, Watson

7.5 mg*

Buspirone Hydrochloride (with povidone; scored)

Par

10 mg*

BuSpar (multi-scored)

Bristol-Myers Squibb

Buspirone Hydrochloride (scored)

Aegis, Ethex, Mylan, Par, Sandoz, Teva, Watson

15 mg*

BuSpar Dividose (scored)

Bristol-Myers Squibb

Buspirone Hydrochloride (multi-scored)

Aegis, Ethex, Mylan, Par, Sandoz, Teva, Watson

30 mg*

BuSpar Dividose (multi-scored)

Bristol-Myers Squibb

Buspirone Hydrochloride (multi-scored)

Mylan, Teva

Comparative Pricing

This pricing information is subject to change at the sole discretion of DS Pharmacy. This pricing information was updated 02/2014. Actual costs to patients will vary depending on the use of specific retail or mail-order locations and health insurance copays.

BuSpar 30MG Tablets (B-M SQUIBB U.S. (PRIMARY CARE)): 30/$158.07 or 90/$453.94

BusPIRone HCl 10MG Tablets (WATSON LABS): 90/$18.99 or 180/$27.99

BusPIRone HCl 15MG Tablets (MYLAN): 90/$73.00 or 180/$134.99

BusPIRone HCl 30MG Tablets (MYLAN): 30/$50.99 or 90/$133.97

BusPIRone HCl 5MG Tablets (WATSON LABS): 30/$13.99 or 90/$39.99

BusPIRone HCl 7.5MG Tablets (PAR): 60/$99.57 or 180/$282.38

AHFS DI Essentials. © Copyright, 2004-2014, Selected Revisions June 1, 2006. American Society of Health-System Pharmacists, Inc., 7272 Wisconsin Avenue, Bethesda, Maryland 20814.

References

1. Bristol-Myers Squibb. BuSpar (buspirone hydrochloride) prescribing information. Princeton, NJ; 2002 Feb.

2. Mead Johnson Pharmaceuticals. BuSpar (buspirone hydrochloride) manufacturer’s information. Evansville, IN; 1986 Dec.

3. Mead Johnson Pharmaceuticals. BuSpar (buspirone hydrochloride) product information. Evansville, IN; (undated).

4. Temple DL Jr, Yevich JP, New JS. Buspirone: chemical profile of a new class of anxioselective agents. J Clin Psychiatry. 1982; 43(12 Part 2):4-10. [IDIS 162637] [PubMed 6185470]

5. Kastenholz KV, Crismon ML. Buspirone, a novel nonbenzodiazepine anxiolytic. Clin Pharm. 1984; 3:600-7. [IDIS 193404] [PubMed 6150781]

6. Riblet LA, Taylor DP, Eison MS et al. Pharmacology and neurochemistry of buspirone. J Clin Psychiatry. 1982; 43(12 Part 2):11-6. [PubMed 6130068]

7. Skolnick P, Weissman BA, Youdim MBH. Monoaminergic involvement in the pharmacological actions of buspirone. Br J Pharmacol. 1985; 86:637-44. [PubMed 2933109]

8. Eison AS, Eison MS, Stanley M et al. Serotonergic mechanisms in the behavioral effects of buspirone and gepirone. Pharmacol Biochem Behav. 1986; 24:701-7. [PubMed 2871564]

9. Hjorth S, Carlsson A. Buspirone: effects on central monoaminergic transmission—possible relevance to animal experimental and clinical findings. Eur J Pharmacol. 1982; 83:299-303. [PubMed 6129148]

10. Glaser T, Traber J. Buspirone: action on serotonin receptors in calf hippocampus. Eur J Pharmacol. 1983; 88:137-8. [PubMed 6133764]

11. Taylor DP, Allen LE, Becker JA et al. Changing concepts of the biochemical action oi the anxioselective drug, buspirone. Drug Dev Res. 1984; 4:95-108.

12. Eison MS, Eison AS. Buspirone as a midbrain modulator: anxiolysis unrelated to traditional benzodiazepine mechanisms. Drug Dev Res. 1984; 4:109-19.

13. Stanton HC, Taylor DP, Riblet LA. Buspirone—an anxioselective drug with dopaminergic action. In: Chronister RB, DeFrance IF, eds. The neurobiology of the nucleus accumbens (proceedings symposium). Brunswick, ME: Haer Institute; 1981:316-21.

14. Cimino M, Ponzio F, Achilli G et al. Dopaminergic effects of buspirone, a novel anxiolytic agent. Biochem Pharmacol. 1983; 32:1069-74. [PubMed 6838654]

15. Leonard BE. Neuropharmacological profile of buspirone: a nonbenzodiazepine anxiolytic with specific mid-brain modulating properties. Br J Clin Pract. 1985; 38(Symp Suppl):74-82.

16. McMillen BA, Matthews RT, Sanghera MK et al. Dopamine receptor antagonism by the novel anti-anxiety drug, buspirone. J Neurosci. 1983; 3:733-8. [PubMed 6131948]

17. Kaulen P, Brüning G, Schneider U et al. Autoradiographic localization of [3H]buspirone binding sites in rat brain. Neurosci Lett. 1985; 53:191-5. [PubMed 3982707]

18. McMillen BA. Comparative chronic effects of buspirone or neuroleptics on rat brain dopaminergic neurotransmission. J Neural Transm. 1985; 64:1-12. [PubMed 2866230]

19. Wood PL, Nair NPV, Lal S et al. Buspirone: a potential atypical neuroleptic. Life Sci. 1983; 33:269-73. [PubMed 6135133]

20. McMillen BA, Mattiace LA. Comparative neuropharmacology of buspirone and MJ-13805, a potential anti-anxiety drug. J Neural Transm. 1983; 57:255-65. [PubMed 6140299]

21. Oakley NR, Jones BJ. Buspirone enhances [3H]flunitrazepam binding in vivo. Eur J Pharmacol. 1983; 87:499-500. [PubMed 6133760]

22. Sanghera MK, McMillen BA, German DC. Buspirone, a non-benzodiazepine anxiolytic, increases locus coeruleus noradrenergic neuronal activity. Eur J Pharmacol. 1983; 86:107-10.

23. Kozak W, Valzelli L, Garattini S. Anxiolytic activity on locus coeruleus-mediated suppression of muricidal aggression. Eur J Pharmacol. 1984; 105:323-6. [PubMed 6150860]

24. Kolasa K, Fusi R, Garattini S et al. Neurochemical effects of buspirone, a novel psychotropic drug, on the central cholinergic system. J Pharm Pharmacol. 1982; 34:314-7. [PubMed 6123570]

25. Geller I, Hartmann RJ. Effects of buspirone on operant behavior of laboratory rats and cynomologus monkeys. J Clin Psychiatry. 1982; 43(12 Part 2):25-32. [PubMed 6130070]

26. Sathananthan GL, Sanghvi I, Phillips N et al. MJ 9022: correlation between neuroleptic potential and stereotypy. Curr Ther Res. 1975; 18:701-5. [IDIS 60551] [PubMed 1208]

27. Meltzer HY, Flemming R, Robertson A. The effect of buspirone on prolactin and growth hormone secretion in man. Arch Gen Psychiatry. 1983; 40:1099-1102. [IDIS 176003] [PubMed 6138009]

28. Meltzer HY, Simonovic M, Fang VS et al. Effect of buspirone on rat plasma prolactin levels and striatal dopamine turnover. Psychopharmacology. 1982; 78:49-53. [PubMed 6128756]

29. Gammans RE, Mayol RF, Mackenthun AV et al. The relationship between buspirone bioavailability and dose in healthy subjects. Biopharm Drug Dispos. 1985; 6:139-45. [IDIS 200634] [PubMed 2860931]

30. Mayol RF, Gammans RE, Mackenthun AV et al. The effect of food on the bioavailability of buspirone hydrochloride. Clin Res. 1983; 31:631A.

31. Caccia S, Conti I, Vigano G et al. 1-(2-Pyrimidinyl)-piperazine as active metabolite of buspirone in man and rat. Pharmacology. 1986; 33:46-51. [PubMed 2874572]

32. Garattini S, Caccia S, Mennini T. Notes on buspirone’s mechanisms of action. J Clin Psychiatry. 1982; 43(12 Part 2):19-22. [PubMed 6130069]

33. Garattini S. Active drug metabolites: an overview of their relevance in clinical pharmacokinetics. Clin Pharmacokinet. 1985; 10:216-27. [IDIS 202192] [PubMed 2861928]

34. Gammans RE, Mayol RF, Labudde JA. Metabolism and disposition of buspirone. Am J Med. 1986; 80(Suppl 3B):41-51. [IDIS 213842] [PubMed 3515929]

35. Bullen WW, Bivens DL, Gammans RE et al. The binding of buspirone to human plasma proteins. Fed Proc. 1985; 44:1123.

36. Feighner JP, Merideth CH, Hendrickson GA. A double-blind comparison of buspirone and diazepam in outpatients with generalized anxiety disorder. J Clin Psychiatry. 1982; 43(12 Part 2):103-7. [IDIS 162648] [PubMed 6130066]

37. Goldberg HL, Finnerty RJ. The comparative efficacy of buspirone and diazepam in the treatment of anxiety. Am J Psychiatry. 1979; 136:1184-7. [IDIS 101374] [PubMed 382878]

38. Jacobson AF, Dominguez RA, Goldstein BJ et al. Comparison of buspirone and diazepam in generalized anxiety disorder. Pharmacotherapy. 1985; 5:290-6. [IDIS 394637] [PubMed 2866493]

39. Pecknold JC, Familamiri P, Chang H et al. Buspirone: anxiolytic? Prog Neuro Psychopharmacol Biol Psychiatry. 1985; 9:639-42. (IDIS 222145)

40. Goldberg HL, Finnerty R. Comparison of buspirone in two separate studies. J Clin Psychiatry. 1982; 43(12 Part 2):87-91. [IDIS 162644] [PubMed 6759499]

41. Wheatley D. Buspirone: multicenter efficacy study. J Clin Psychiatry. 1982; 43(12 Part 2):92-4. [IDIS 162645] [PubMed 6130079]

42. Cohn JB, Bowden CL, Fisher JG et al. Double-blind comparison of buspirone and clorazepate in anxious outpatients. Am J Med. 1986; 80(Suppl 3B):10-6. [IDIS 213837] [PubMed 2870640]

43. Bond A, Lader M, Shrotriya R. Comparative effects of a repeated dose regime of diazepam and buspirone on subjective ratings, psychological tests and the EEG. Eur J Clin Pharmacol. 1983; 24:463-7. [IDIS 170507] [PubMed 6134624]

44. Schweizer E, Rickels K, Lucki I. Resistance to the anti-anxiety effect of buspirone in patients with a history of benzodiazepine use. N Engl J Med. 1986; 314:719-20. [IDIS 211444] [PubMed 2869408]

45. Cohn JB, Wilcox CS. Low sedation potential of buspirone compared with alprazolam and lorazepam in the treatment of anxious patients: a double-blind study. J Clin Psychiatry. 1986; 47:409-12. [IDIS 220834] [PubMed 2874128]

46. Turnbull JM, Turnbull SK. Management of specific anxiety disorders in the elderly. Geriatrics. 1985; 40:75-82. [IDIS 203573] [PubMed 4007503]

47. Napoliello MJ. An interim multicentre report on 677 anxious geriatric out-patients treated with buspirone. Br J Clin Pract. 1986; 40:71-3. [IDIS 213501] [PubMed 2871858]

48. Seidel WF, Cohen SA, Bliwise NG et al. Buspirone: an anxiolytic without sedative effect. Psychopharmacology. 1985; 87:371-3. [IDIS 222149] [PubMed 2867573]

49. Lader M. Psychological effects of buspirone. J Clin Psychiatry. 1982; 43(12 Part 2):62-7. [IDIS 162640] [PubMed 6130075]

50. Seppala T, Aranko K, Mattila MJ et al. Effects of alcohol on buspirone and lorazepam actions. Clin Pharmacol Ther. 1982; 32:201-7. [IDIS 159111] [PubMed 6124334]

51. Moskowitz H, Smiley A. Effects of chronically administered buspirone and diazepam on driving-related skills performance. J Clin Psychiatry. 1982; 43(12 Part 2):45-55. [IDIS 162638] [PubMed 6130073]

52. Cole JO, Orzack MH, Beake B et al. Assessment of the abuse liability of buspirone in recreational sedative users. J Clin Psychiatry. 1982; 43(12 Part 2):69-74. [IDIS 162641] [PubMed 6130076]

53. Cohn JB, Wilcox CS, Meltzer HY. Neuroendocrine effects of buspirone in patients with generalized anxiety disorder. Am J Med. 1986; 80(Suppl 3B):36-40. [IDIS 213841] [PubMed 3963033]

54. Schweizer EE, Amsterdam J, Rickels K et al. Open trial of buspirone in the treatment of major depressive disorder. Psychopharmacol Bull. 1986; 22:183-5. [IDIS 222146] [PubMed 2873610]

55. Meyer RE. Anxiolytics and the alcoholic patient. J Stud Alcohol. 1986; 47:269-73. [PubMed 2875216]

56. Frazer GA, Lapierre YD. The effect of buspirone on panic disorder: a case report. J Clin Psychopharmacol. 1987; 7:118-9. [IDIS 228406] [PubMed 2884236]

57. Hammerstad JP, Carter J, Nutt JG et al. Buspirone in Parkinson’s disease. Clin Neuropharmacol. 1986; 9:556-60. [PubMed 3026624]

58. Ludwig CL, Weinberger DR, Bruno G et al. Buspirone, Parkinson’s disease, and the locus ceruleus. Clin Neuropharmacol. 1986; 9:373-8. [PubMed 2873889]

59. Napoliello MJ. A study of buspirone coprescribed with antidepressants in 184 anxious ambulatory patients. Curr Ther Res. 1986; 40:917-23.

60. Jerkovich GS, Preskorn SH. Failure of buspirone to protect against lorazepam withdrawal symptoms. JAMA. 1987; 258:204-5. [IDIS 231321] [PubMed 2885432]

61. Newton RE, Marunycz JD, Alderdice MT et al. Review of the side-effect profile of buspirone. Am J Med. 1986; 80(Suppl 3B):17-21. [IDIS 213838] [PubMed 2870641]

62. Newton RE, Casten GP, Alms DR et al. The side effect profile of buspirone in comparison to active controls and placebo. J Clin Psychiatry. 1982; 43(12 Part 2):100-2. [IDIS 162647] [PubMed 6130065]

63. Schnabel T Jr. Evaluation of the safety and side effects of antianxiety agents. Am J Med. 1987; 82(Suppl 5A):7-13. [IDIS 239928] [PubMed 2884874]

64. Gammans RE, Mayol RF, LaBudde JA et al. Metabolic fate of14C/15N-buspirone in man. Fed Proc. 1982; 41:1335.

65. Mayol RF, Marvel CJ, LaBudde JA. Development and validation of a radioimmunoassay for buspirone. Fed Proc. 1981; 40:684.

66. Weissman BA, Barrett JE, Brady LS et al. Behavioral and neurochemical studies on the anticonflict actions of buspirone. Drug Dev Res. 1984; 4:83-93.

67. Riblet LA, Allen LE, Hyslop DK et al. Pharmacologic activity of buspirone, a novel non-benzodiazepine antianxiety agent. Fed Proc. 1980; 39:752.

68. Eison AS, Temple DL Jr. Buspirone: review of its pharmacology and current perspectives on its mechanism of action. Am J Med. 1986; 80(Suppl 3B):1-9. [IDIS 213836] [PubMed 2870639]

69. VanderMaelen CP, Wilderman RC. Iontophoretic and systemic administration of the non-benzodiazepine anxiolytic drug buspirone causes inhibition of serotonergic dorsal raphe neurons in rats. Fed Proc. 1984; 43:947.

70. Taylor DP, Eison MS, Riblet LA et al. Pharmacological and clinical effects of buspirone. Pharmacol Biochem Behav. 1985; 23:687-93. [PubMed 2866549]

71. Schweizer E, Rickels K. Failure of buspirone to manage benzodiazepine withdrawal. Am J Psychiatry. 1986; 143:1590-2. [IDIS 224201] [PubMed 2878622]

72. Rickels K, Weisman K, Norstad N et al. Buspirone and diazepam in anxiety: a controlled study. J Clin Psychiatry. 1982; 43(12 Part 2):81-6. [IDIS 162643] [PubMed 6130078]

73. Mattila MJ, Aranko K, Seppala T. Acute effects of buspirone and alcohol on psychomotor skills. J Clin Psychiatry. 1982; 43(12 Part 2):56-60. [IDIS 162639] [PubMed 6130074]

74. Erwin CW, Linnoila M, Hartwell J et al. Effects of buspirone and diazepam, alone and in combination with alcohol, on skilled performance and evoked potentials. J Clin Psychopharmacol. 1986; 6:199-208. [IDIS 219211] [PubMed 3734141]

75. Eison MS. Lack of withdrawal signs of dependence following cessation of treatment or Ro-15,1788 administration to rats chronically treated with buspirone. Neuropsychobiology. 1986; 16:15-8. [PubMed 3106850]

76. Mattila M, Seppala T, Mattila MJ. Combined effects of buspirone and diazepam on objective and subjective tests of performance in healthy volunteers. Clin Pharmacol Ther. 1986; 40:620-6. [IDIS 224628] [PubMed 3780124]

77. Balster RL, Woolverton WL. Intravenous buspirone self-administration in rhesus monkeys. J Clin Psychiatry. 1982; 43(12 Part 2):34-7. [PubMed 6130071]

78. Riblet LA, Eison AS, Eison MS et al. Neuropharmacology of buspirone. Psychopathology. 1984; 17(Suppl 3):69-78. [PubMed 6150510]

79. Riblet LA, Eison AS, Eison MS et al. Buspirone: an anxioselective alternative for the management of anxiety disorders. Prog Neuro-Psychopharmacol & Biol Psychiatry. 1983; 7:663-8.

80. Anon. Drugs for psychiatric disorders. Med Lett Drugs Ther. 1986; 28:99-106. [PubMed 3762490]

81. Rickels K. Nonbenzodiazepine anxiolytics: clinical usefulness. J Clin Psychiatry. 1983; 44:38-43. [IDIS 178287] [PubMed 6139368]

82. Rickels K. Clinical studies of ″specific″ anxiolytics as therapeutic agents. Psychopharmacol Ser. 1987; 3:88-95. [PubMed 2881295]

83. Anon. Buspirone: a non-benzodiazepine for anxiety. Med Lett Drugs Ther. 1986; 28:117-8. [PubMed 2878352]

84. Griffith JD, Jasinski DR, Casten GP et al. Investigation of the abuse liability of buspirone in alcohol-dependent patients. Am J Med. 1986; 80(Suppl 3B):30-5. [IDIS 213840] [PubMed 3963032]

85. File SE. Aversive and appetitive properties of anxiogenic and anxiolytic agents. Behav Brain Res. 1986; 21:189-94. [PubMed 2876714]

86. Lader M, Olajide D. A comparison of buspirone and placebo in relieving benzodiazepine withdrawal symptoms. J Clin Psychopharmacol. 1987; 7:11-5. [IDIS 225368] [PubMed 2880872]

87. Tyrer P, Murphy S, Owen RT. The risk of pharmacological dependence with buspirone. Br J Clin Pract. 1985; 38(Symp Suppl):91-3.

88. Goldberg HL. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Pharmacotherapy. 1984; 4:315-24. [IDIS 393521] [PubMed 6151170]

89. Jann MW. Buspirone: an update on a unique anxiolytic agent. Pharmacotherapy. 1988; 8:100-16. [IDIS 389342] [PubMed 3041384]

90. Smiley A, Moskowitz H. Effects of long-term administration of buspirone and diazepam on driver steering control. Am J Med. 1986; 80(Suppl 3B):22-9. [IDIS 213839] [PubMed 3963031]

91. Gershon S. Drug interactions in controlled clinical trials. J Clin Psychiatry. 1982; 43(12 Part 2):95-8. [IDIS 162646] [PubMed 6130080]

92. Lader M. Assessing the potential for buspirone dependence or abuse and effects of its withdrawal. Am J Med. 1987; 82(Suppl 5A):20-6. [IDIS 239930] [PubMed 3296749]

93. Schuckit MA. Alcohol and drug interactions with antianxiety medications. Am J Med. 1987; 82(Suppl 5A):27-33. [IDIS 239931] [PubMed 2884873]

94. Gammans RE, Bullen WW, Briner L et al. The effects of buspirone binding to the binding of digoxin, dilantin, propranolol, and warfarin to human plasma. Fed Proc. 1985; 44:1123.

95. Goldberg HL. Buspirone—a new antianxiety agent not chemically related to any presently marketed drugs. Psychopharmacol Bull. 1979; 15:90-2. [IDIS 222148] [PubMed 34846]

96. Bond AJ, Lader MH. Comparative effects of diazepam and buspirone on subjective feelings, psychological tests and the EEG. Int Pharmacopsychiatry. 1981; 16:212-20. [IDIS 222151] [PubMed 6121766]

97. McKinney GR (Mead Johnson Pharmaceutical Division, Evansville, IN): Personal communication; 1987 June 19.

98. Murphy SM, Owen RT, Tyrer PJ. Withdrawal symptoms after six weeks’ treatment with diazepam. Lancet. 1984; 2:1389. [PubMed 6150380]

99. Othmer E, Othmer SC. Effect of buspirone on sexual dysfunction in patients with generalized anxiety disorder. J Clin Psychiatry. 1987; 48:201-3. [IDIS 229628] [PubMed 2883173]

100. Lucki I, Rickels K, Giesecke MA et al. Differential effects of the anxiolytic drugs, diazepam and buspirone, on memory function. Br J Clin Pharmacol. 1987; 23:207-11. [IDIS 227660] [PubMed 2881573]

101. Spencer DG Jr, Traber J. The interceptive discriminative stimuli induced by the novel putative anxiolytic TVX Q 7821: behavioral evidence for the specific involvement of serotonin 5-HT1A receptors. Psychopharmacology. 1987; 91:25-9. [PubMed 2881318]

102. Peroutka SJ. Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain. Brain Res. 1985; 344:167-71. [PubMed 4041865]

103. Smith LM, Peroutka SJ. Differential effects of 5-hydroxytryptamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav. 1986; 24:1513-9. [PubMed 2942947]

104. Caccia S, Vigano GL, Mingardi G et al. Clinical pharmacokinetics of oral buspirone in patients with impaired renal function. Clin Pharmacokinet. 1988; 14:171-7. [IDIS 240297] [PubMed 3370902]

105. Lader MH, Napoliello MJ. A study of buspirone co-prescribed with antihistamines in 68 anxious ambulatory patients. J Clin Psychopharmacol. 1988; 8:146-8. [IDIS 241307] [PubMed 2897380]

106. Ross CA. Buspirone in the treatment of tardive dyskinesia. Med Hypotheses. 1987; 22:321-8. [PubMed 2884555]

107. Ross CA, Matas M. A clinical trial of buspirone and diazepam in the treatment of generalized anxiety disorder. Can J Psychiatry. 1987; 32:351-5. [PubMed 3308052]

108. Fontaine R, Beaudry P, Beauclair L et al. Comparison of withdrawal of buspirone and diazepam: a placebo controlled study. Prog Neuro-Psychopharmacol & Biol Psychiatry. 1987; 11:189-97.

109. Olajide D, Lader M. A comparison of buspirone, diazepam, and placebo in patients with chronic anxiety states. J Clin Psychopharmacol. 1987; 7:148-52. [IDIS 230256] [PubMed 2885344]

110. Dalhoff K, Poulsen HE, Garred P et al. Buspirone pharmacokinetics in patients with cirrhosis. Br J Clin Pharmacol. 1987; 24:547-50. [IDIS 234949] [PubMed 3689635]

111. Seppala T, Ranta T, Shrotriya RC. Serum prolactin levels after buspirone in man. Med Biol. 1987; 65:61-3. [PubMed 3613693]

112. Goa KL, Ward A. Buspirone: a preliminary review of its pharmacological properties and therapeutic efficacy as an anxiolytic. Drugs. 1986; 32:114-29. [IDIS 219639] [PubMed 2874976]

113. Singh AN, Beer M. A dose range-finding study of buspirone in geriatric patients with symptoms of anxiety. J Clin Psychopharmacol. 1988; 8:67-8. [IDIS 239185] [PubMed 3351003]

114. Feighner JP. Buspirone in the long-term treatment oi generalized anxiety disorder. J Clin Psychiatry. 1987; 48(Suppl):3-6. [IDIS 314241] [PubMed 3320034]

115. Gammans RE, Mayol RF, Mackenthun AV et al. Relationship between dose and bioavailability of buspirone. Clin Res. 1983; 31:628A.

116. Mayol RF, Adamson DS, Gammans RE et al. Pharmacokinetics and disposition of14C-buspirone HCL after intravenous and oral dosing in man. Clin Pharmacol Ther. 1985; 37:210.

117. Gosselin RE, Smith RP, Hodge HC. Clinical toxicology of commercial products. 5th ed. Baltimore: The Williams & Wilkins Co; 1984:I-10.

118. Molitor JA, Gammans RE, Carroll CM et al. Effect of buspirone on mixed function oxidase activity in rats. Fed Proc. 1985; 44:1257.

119. Gammans RE, Pfeffer M, Westrick ML et al. Lack of interaction between cimetidine and buspirone. Pharmacotherapy. 1987; 7:72-9. [IDIS 391044] [PubMed 2888096]

120. Hansten PD, Horn JR. Buspirone and cimetidine. Drug Interact Newsl. 1987; 7:38.

121. APA Work Group to Revise DSM-III. Diagnostic and statistical manual of mental disorders: DSM-III-R. 3rd ed, rev. Washington, DC: American Psychiatric Association. 1987:235-53,392.

122. Anon. Buspirone—a radical advance in the treatment of anxiety? Lancet. 1988; 1:804-6. Editorial.

123. Mead Johnson Pharmaceuticals. BuSpar (buspirone hydrochloride) information for the healthcare professional. Evansville, IN; 1986 Oct.

124. Lader M. Long-term anxiolytic therapy: the issue of drug withdrawal. J Clin Psychiatry. 1987; 48(Suppl):12-6. [IDIS 314243] [PubMed 2891684]

125. Gammans RE, Mayol RF, Eison MS. Concentration of buspirone and 1-pyrimidinylpiperazine, a metabolite, in rat brain. Fed Proc. 1983; 42:377.

126. Caccia S, Garattini S, Mancinelli A et al. Identification and quantitation of 1-(2-pyrimidinyl)piperazine, an active metabolite of the anxiolytic agent buspirone, in rat plasma and brain. J Chromatogr. 1982; 252:310-4. [PubMed 7182413]

127. Caccia S, Fong MH, Guiso G. Disposition of the psychotropic drugs buspirone, MJ-13805 and piribedil, and of their common metabolite 1-(2-pyrimidinyl)-piperazine in the rat. Xenobiotica. 1985; 15:835-44. [PubMed 2866634]

128. Ereshefsky L. Buspirone’s advantages over benzodiazepine anxiolytics. Clin Pharm. 1984; 3:654-5. [IDIS 193416] [PubMed 6150783]

129. Hatfield SM, Parenti MA. Buspirone hydrochloride. Hosp Pharm. 1987; 22:580-92.

130. Fabre LF. Double-blind comparison of buspirone with diazepam in anxious patients. Curr Ther Res. 1987; 41:751-9.

131. Yevich JP, Temple DL Jr, New JS et al. Buspirone analogues: 1. Structure-activity relationships in a series of N-aryl-and heteroarylpiperazine derivatives. J Med Chem. 1983; 26:194-203. [PubMed 6131130]

132. New JS, Yevich JP, Eison MS et al. Buspirone analogues: 2. Structure-activity relationships of aromatic imide derivatives. J Med Chem. 1986; 29:1476-82. [PubMed 2874226]

133. Williams M. Anxioselective anxiolytics. J Med Chem. 1983; 26:619-28. [IDIS 169695] [PubMed 6132997]

134. Trulson ME, Preussler DW, Howell GA et al. Raphe unit activity in freely moving cats: effects of benzodiazepines. Neuropharmacology. 1982; 21:1045-50. [PubMed 6292767]

135. Eison MS, VanderMaelen CP, Matheson GK et al. Interactions of the anxioselective agent buspirone with central serotonergic systems. Soc Neurosci Abstr. 1983; 9:435.

136. Van de Kar LD, Urban JH, Lorens SA et al. The non-benzodiazepine anxiolytic buspirone inhibits stess-induced renin secretion and lowers heart rate. Life Sci. 1985; 36:1149-55. [PubMed 2858796]

137. Offord SJ, Ordway GA, Frazer A. Application of [125I]iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat. J Pharmacol Exp Ther. 1988; 244:144-53. [PubMed 3335996]

138. Wilkinson LO, Abercrombie ED, Rasmussen K et al. Effect of buspirone on single unit activity in locus coeruleus and dorsal raphe nucleus in behaving cats. Eur J Pharmacol. 1987; 136:123-7. [PubMed 3595712]

139. Peroutka SJ, Mauk MD, Kocsis JD. Modulation of neuronal activity in the hippocampus by 5-hydroxytryptamine and 5-hydroxytryptamine1A selective drugs. Neuropharmacology. 1987; 26:139-46. [PubMed 2884586]

140. Trulson ME, Trulson TJ. Buspirone decreases the activity oi serotonin-containing neurons in the dorsal raphe in freely-moving cats. Neuropharmacology. 1986; 25:1263-6. [PubMed 2879255]

141. VanderMaelen CP, Matheson GK, Wilderman RC et al. Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol. 1986; 129:123-30. [PubMed 2876903]

142. Rowan MJ, Anwyl R. Neurophysiological effects of buspirone and isapirone in the hippocampus: comparison with 5-hydroxytryptamine. Eur J Pharmacol. 1987; 132:93-6.

143. Mansbach RS, Barrett JE. Discriminative stimulus properties of buspirone in the pigeon. J Pharmacol Exp Ther. 1987; 240:364-9. [PubMed 3806400]

144. Gardner CR. Recent developments in 5HT-related pharmacology of animal models of anxiety. Pharmacol Biochem Behav. 1986; 24:1479-85. [PubMed 2873594]

145. Davis M, Cassella JV, Kehne JH. Serotonin does not mediate anxiolytic effects of buspirone in the fear-potentiated paradigm: comparison with 8-OH-DPAT and ipsapirone. Psychopharmacology (Berl). 1988; 94:14-20. [PubMed 2894698]

146. Pellow S, Johnston AL, File SE. Selective agonists and antagonists for 5-hydroxytryptamine receptor subtypes, and interactions with yohimbine and FG 7142 using the elevated plus-maze test in the rat. J Pharm Pharmacol. 1987; 39:917-28. [PubMed 2892916]

147. Kennett GA, Marcou M, Dourish CT et al. Single administration of 5-HT agonists decreases 5-HT1A presynaptic, but not receptor-mediated responses: relationship to antidepressant-like action. Eur J Pharmacol. 1987; 138:53-60. [PubMed 2442002]

148. Kennett GA, Dourish CT, Curzon G. Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur J Pharmacol. 1987; 134:265-74. [PubMed 2883013]

149. Mennini T, Gobbi M, Ponzio F et al. Neurochemical effects of buspirone in rat hippocampus: evidence for selective activation of 5HT neurons. Arch Int Pharmacodyn Ther. 1986; 279:40-9. [PubMed 2421657]

150. Witkin JM, Mansbach RS, Barrett JE et al. Behavioral studies with anxiolytic drugs: IV. Serotonergic involvement in the effects of buspirone on punished behavior of pigeons. J Pharmacol Exp Ther. 1987; 243:970-7. [PubMed 2891840]

151. Peroutka SJ, Huang S, Allen GS. Canine basilar artery contractions mediated by 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther. 1986; 237:901-6. [PubMed 2940360]

152. Zisook S. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 1. Pharmacotherapy. 1984; 4:321-2.

153. Ereshefsky L. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 2. Pharmacotherapy. 1984; 4:322.

154. Lydiard RB. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 3. Pharmacotherapy. 1984; 4:322-3.

155. Wells BG. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 4. Pharmacotherapy. 1984; 4:323-4.

156. Morton WA Jr. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 5. Pharmacotherapy. 1984; 4:324.

157. Schatzberg AF. Buspirone hydrochloride: a unique new anxiolytic agent. Pharmacokinetics, clinical pharmacology, abuse potential and clinical efficacy. Commentary 6. Pharmacotherapy. 1984; 4:324.

158. Beaumont G. Buspirone: its potential role in the treatment of general practice anxiety. Br J Clin Pract. 1985; 38(Symp Suppl):100-6.

159. Perry PJ. Assessment of addiction liability of benzodiazepines and buspirone. Drug Intell Clin Pharm. 1985; 19:657-9. [IDIS 205139] [PubMed 2864227]

160. Tyrer P, Owen R. Anxiety in primary care: is short-term drug treatment appropriate? J Psychiatr Res. 1984; 18:73-8.

161. McMillen BA, Scott SM, Williams HL et al. Effects of gepirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission. Naunyn-Schmiedebergs Arch Pharmacol. 1987; 335:454-64. [PubMed 2439924]

162. Pellow S, File SE. Is tofisopam an atypical anxiolytic? Neurosci Biobehav Rev. 1986; 10:221-7.

163. Skolnick P, Paul SM, Weissman BA. Preclinical pharmacology of buspirone hydrochloride. Pharmacotherapy. 1984; 4:308-14. [PubMed 6151169]

164. McMillen BA, McDonald CC. Selective effects of buspirone and molindone on dopamine metabolism and function in the striatum and frontal cortex of the rat. Neuropharmacology. 1983; 22:273-8. [PubMed 6133232]

165. Hoehn-Saric R. Neurotransmitters in anxiety. Arch Gen Psychiatry. 1982; 39:735-42. [PubMed 6124225]

166. Allen LE, Ferguson HC, Cox RH Jr. Pharmacologic effects of MJ 9022-1, a potential tranquilizing agent. Arzneimittelforschung. 1974; 24:917-22. [PubMed 4212236]

167. Dommisse CS, DeVane CL. Buspirone: a new type of anxiolytic. Drug Intell Clin Pharm. 1985; 19:624-8. [IDIS 205136] [PubMed 2864225]

168. Rickels K. Antianxiety therapy: potential value of long-term treatment. J Clin Psychiatry. 1987; 48(Suppl):7-11. [IDIS 314242] [PubMed 2891688]

169. Liegghio NE, Yeragani VK, Moore NC. Buspirone-induced jitteriness in three patients with panic disorder and one patient with generalized anxiety disorder. J Clin Psychiatry. 1988; 49:165-6. [IDIS 241190] [PubMed 3356675]

170. Sills MA, Wolfe BB, Frazer A. Determination of selective and nonselective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther. 1984; 231:480-7. [PubMed 6502510]

171. Lerman JA, Kaitin KI, Dement WC et al. The effects of buspirone on sleep in the rat. Neurosci Lett. 1986; 72:64-8. [PubMed 2880319]

172. Wander TJ, Nelson A, Okazaki H et al. Antagonism by antidepressants of serotonin S1 and S2 receptors of normal human brain in vitro. Eur J Pharmacol. 1986; 132:115-21. [PubMed 3816971]

173. Louilot A, Le Moal M, Simon H. A study of the effects of buspirone, BMY 13805, and 1-PP on dopaminergic metabolism in the nucleus accumbens using in vivo voltammetry in freely moving rats. Life Sci. 1986; 39:685-92. [PubMed 2874469]

174. Hanson RC, Braselton JP, Hayes DC et al. Cardiovascular and renal effects of buspirone in several animal models. Gen Pharmacol. 1986; 17:267-74. [PubMed 2873078]

175. Liegghio NE, Yeragani VK. Buspirone-induced hypomania: a case report. J Clin Psychopharmacol. 1988; 8:226-7. [IDIS 242980] [PubMed 3379150]

176. Shimizu H, Hirose A, Tatsuno T et al. Pharmacological properties of SM-3997: a new anxioselective anxiolytic candidate. Jpn J Pharmacol. 1987; 45:493-500. [PubMed 2895201]

177. Witkin JM Barrett JE. Interaction of buspirone and dopaminergic agents on punished behavior of pigeons. Pharmacol Biochem Behav. 1986; 24:751-6. [PubMed 2871566]

178. Sanghera MK, German DC. The effects of benzodiazepine and non-benzodiazepine anxiolytics on locus coeruleus unit activity. J Neural Transm. 1983; 57:267-79. [PubMed 6140300]

179. Saller CF, Salama AI. 3-Methoxytyramine accumulation: effects of typical neuroleptics and various atypical compounds. Naunyn-Schmiedebergs Arch Pharmacol. 1986; 334:125-32. [PubMed 2878374]

180. Louilot A, Le Moal M, Simon H. Presynaptic control of dopamine metabolism in the nucleus accumbens: lack of effect of buspirone as demonstrated using in vivo voltammetry. Life Sci. 1987; 40:2017-24. [PubMed 3573992]

181. Ortiz A, Pohl R, Gershon S. Azaspirodecanediones in generalized anxiety disorder: buspirone. J Affect Disord. 1987; 13:131-43. [PubMed 2960708]

182. Rimele TJ, Henry DE, Lee DKH et al. Tissue-dependent alpha adrenoceptor activity of buspirone and related compounds. J Pharmacol Exp Ther. 1987; 241:771-8. [PubMed 3037069]

183. Bianchi G, Garattini S. Blockade of α2-adrenoceptors by 1-(2-pyrimidinyl)-piperazine (PmP) in vivo and its relation to the activity of buspirone. Eur J Pharmacol. 1988; 147:343-50. [PubMed 2897918]

184. Rickels K, Schweizer E, Csanalosi I et al. Long-term treatment of anxiety and risk of withdrawal: prospective comparison of clorazepate and buspirone. Arch Gen Psychiatry. 1988; 45:444-50. [IDIS 241073] [PubMed 2895993]

185. Evens RP (Mead Johnson Pharmaceuticals, Evansville, IN): Personal communication; 1988 July 20.

186. Reviewers’ comments (personal observations); 1988 July.

187. McMillen BA, DaVanzo EA, Scott SM et al. N-alkyl-substituted aryl-piperazine drugs: relationship between affinity for serotonin receptors and inhibition of aggression. Drug Dev Res. 1988; 12:53-62.

188. Rapoport DM, Greenberg HE, Goldring RM. A placebo controlled comparison of the effects of buspirone and diazepam on control of breathing. (unpublished observations)

189. McGowan G, Napoliello M, Alms D. Buspirone for the management of anxiety in patients with concomitant medical conditions: a retrospective preliminary evaluation. Curr Ther Res. 1988; 43:481-6.

190. Andrade R, Nicoll RA. Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiologic responses on single neurons of the rat hippocampus. Naunyn-Scmiedebergs Arch Pharmacol. 1987; 336:5-10.

191. Rakel R, Alms D, Boehm C et al. The safety of long-term buspirone in treatment of chronic anxiety—a multicenter international study. (unpublished observations)

192. Robinson DS, Roberts DL, Shrotriya RC et al. Non-benzodiazepine anxiolytics, including buspirone. Paper presented at NCDEU annual meeting. Key Biscayne, FL: 1988 May 31-June 3.

193. Robinson D, Napoliello MJ, Schenck J. A final report of the safety of buspirone as an anxiolytic drug in elderly versus young patients. (unpublished observations)

194. Levine S, Napoliello MJ. A study of buspirone coprescribed with histamine H2-receptor antagonists in anxious patients. Int Clin Psychopharmacol. 1988; 3:83-6. [PubMed 3356893]

195. Ritchie EC, Bridenbaugh RH, Jabbari B. Acute generalized myoclonus following buspirone administration. J Clin Psychiatry. 1988; 49:242-3. [IDIS 243337] [PubMed 3379031]

196. Parke-Davis. Nardil (phenelzine sulfate) prescribing information. In: Huff BB, ed. Physicians’ desk reference. 43rd ed. Oradell, NJ: Medical Economics Company Inc; 1989:1571-2.

197. Smith Kline & French Laboratories. Parnate (tranylcypromine sulfate) prescribing information. In: Huff BB, ed. Physicians’ desk reference. 42nd ed. Oradell, NJ: Medical Economics Company Inc; 1988(Suppl A):A47-9.

198. Bodkin JA, Teicher MH. Fluoxetine may antagonize the anxiolytic action of buspirone. J Clin Psychopharmacol. 1989; 9:150. [IDIS 253440] [PubMed 2786010]

199. Alessi N, Bos T. Buspirone augmentation of fluoxetine in a depressed child with obsessive-compulsive disorder. Am J Psychiatry. 1991; 148:1605-6. [IDIS 290517] [PubMed 1928487]

200. Markovitz PJ, Stagno SJ, Calabrese JR. Buspirone augmentation of fluoxetine in obsessive-compulsive disorder. Am J Psychiatry. 1990; 147:790-800.

201. Sporer KA. The serotonin syndrome. Implicated drugs, pathophysiology and management. Drug Saf. 1995; 13:94-104. [PubMed 7576268]

202. Beasley CM, Masica DN, Heiligenstein JH et al. Possible monoamine oxidase inhibitor–serotonin uptake inhibitor interaction: fluoxetine clinical data and preclinical findings. J Clin Psychopharmacol. 1993; 13:312-20. [IDIS 320450] [PubMed 8227489]

203. Bristol-Myers Squibb, Princeton, NJ: Personal communication.

204. Mahmood I, Sahajwalla C. Clinical pharmacokinetics and pharmacodynamics of buspirone, an anxiolytic drug. Clin Pharmacokinet. 1999; 36:277-87. [PubMed 10320950]

205. Barbhaiya RH, Shukla UA, Pfeffer M et al. Disposition kinetics of buspirone in patients with renal or hepatic impairment after administration of single and multiple doses. Eur J Clin Pharmacol. 1994; 46:41-7. [IDIS 327451] [PubMed 7911763]

206. Lamberg TS, Kivistö KT, Neuvonen PJ. Concentrations and effects of buspirone are considerably reduced by rifampicin. Br J Clin Pharmacol. 1998; 45:381-5. [IDIS 407222] [PubMed 9578186]

Hide
(web5)