Skip to main content

Drug Interactions between itraconazole and Valrelease

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

itraconazole diazePAM

Applies to: itraconazole and Valrelease (diazepam)

MONITOR: Coadministration with azole antifungal agents may increase the plasma concentrations of diazepam. The proposed mechanism is inhibition of diazepam metabolism via CYP450 3A4. In 10 healthy volunteers, administration of a single 5 mg oral dose of diazepam following pretreatment with itraconazole 200 mg daily for 4 days resulted in a 15% increase in diazepam systemic exposure (AUC) compared to administration following placebo. A clinically significant effect on psychomotor performance tests was not observed. These results are consistent with the fact that diazepam is metabolized by multiple enzymatic pathways, thus inhibition of a single isoenzyme would not be expected to substantially alter its pharmacokinetics in most patients.

MANAGEMENT: Patients receiving diazepam with azole antifungal agents may need to be monitored for potentially excessive or prolonged central nervous system-depressant effects, and the diazepam dosage adjusted as necessary.

References

  1. "Product Information. Nizoral (ketoconazole)." Janssen Pharmaceuticals 1992 (2001):
  2. "Product Information. Valium (diazepam)." Roche Laboratories PROD (2002):
  3. "Product Information. Diflucan (fluconazole)." Roerig Division PROD (2002):
  4. "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals PROD (2002):
  5. Ahonen J, Olkkola KT, Neuvonen PJ "The effect of the antimycotic itraconazole on the pharmacokinetics and pharmacodynamics of diazepam." Fundam Clin Pharmacol 10 (1996): 314-8
  6. "Product Information. VFEND (voriconazole)." Pfizer U.S. Pharmaceuticals (2002):
  7. "Product Information. Noxafil (posaconazole)." Schering-Plough Corporation (2006):
  8. "Product Information. Cresemba (isavuconazonium)." Astellas Pharma US, Inc (2015):
  9. Andersson T, Miners JO, Veronese ME, Birkett DJ "Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms." Br J Clin Pharmacol 38(2) (1994): 131-7
View all 9 references

Switch to consumer interaction data

Drug and food interactions

Moderate

itraconazole food

Applies to: itraconazole

ADJUST DOSING INTERVAL: Food increases the absorption of itraconazole capsules but decreases the absorption of itraconazole oral solution. Cola beverages may increase the bioavailability of itraconazole capsules. Itraconazole capsules require an acidic gastric pH for adequate dissolution and subsequent absorption. Cola beverages help lower gastric pH and improve absorption.

GENERALLY AVOID: Grapefruit juice may impair the absorption of itraconazole capsules, resulting in decreased antifungal effects. In a small, randomized, crossover study, the administration of itraconazole capsules with double-strength grapefruit juice (compared to water) was associated with significantly decreased (43%) plasma concentrations of itraconazole and its pharmacologically active hydroxy metabolite, as well as delayed times to reach peak concentrations of both. The exact mechanism of interaction is unknown but may involve reduced absorption of itraconazole secondary to enhanced activity of intestinal P-glycoprotein drug efflux pumps and delayed gastric emptying induced by certain compounds present in grapefruits. Another study reported no pharmacokinetic changes with single-strength grapefruit juice. Whether or not these observations apply to itraconazole oral solution is unknown.

MANAGEMENT: The manufacturer recommends that the capsules be taken immediately after a full meal and the solution be taken on an empty stomach to ensure maximal absorption. Cola beverages may help increase the bioavailability of itraconazole capsules, particularly in patients with hypochlorhydria or those treated concomitantly with gastric acid suppressants. Until more information is available, it may be advisable to avoid the consumption of grapefruits and grapefruit juice during itraconazole therapy.

References

  1. Van Peer A, Woestenborghs R, Heykants J, et al. "The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects." Eur J Clin Pharmacol 36 (1989): 423-6
  2. Wishart JM "The influence of food on the pharmacokinetics of itraconazole in patients with superficial fungal infection." J Am Acad Dermatol 17 (1987): 220-3
  3. "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals PROD (2002):
  4. Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, Gaffar MC, Moskovitz BL, Mechlinski W, Van de Velde V "Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers." Antimicrob Agents Chemother 37 (1993): 778-84
  5. Zimmermann T, Yeates RA, Albrecht M, Laufen H, Wildfeuer A "Influence of concomitant food intake on the gastrointestinal absorption of fluconazole and itraconazole in japanese subjects." Int J Clin Pharmacol Res 14 (1994): 87-93
  6. "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals (2022):
  7. Kawakami M, Suzuki K, Ishizuka T, Hidaka T, Matsuki Y, Nakamura H "Effect of grapefruit juice on pharmacokinetics of itraconazole in healthy subjects." Int J Clin Pharmacol Ther 36 (1998): 306-8
  8. Barone JA, Moskotitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L "Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers." Pharmacotherapy 18 (1998): 295-301
  9. Penzak SR, Gubbins PO, Gurley BJ, Wang PL, Saccente M "Grapefruit juice decreases the systemic availability of itraconazole capsules in healthy volunteers." Ther Drug Monit 21 (1999): 304-9
  10. Katz HI "Drug interactions of the newer oral antifungal agents." Br J Dermatol 141 (1999): 26-32
View all 10 references

Switch to consumer interaction data

Moderate

diazePAM food

Applies to: Valrelease (diazepam)

GENERALLY AVOID: Acute alcohol ingestion may potentiate the CNS depression and other CNS effects of many benzodiazepines. Tolerance may develop with chronic ethanol use. The mechanism may be decreased clearance of the benzodiazepines because of CYP450 hepatic enzyme inhibition. Also, it has been suggested that the cognitive deficits induced by benzodiazepines may be increased in patients who chronically consume large amounts of alcohol.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. However, the interaction seems to affect primarily those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability), presumably due to the fact that grapefruit juice inhibits intestinal rather than hepatic CYP450 3A4. Because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised to avoid alcohol during benzodiazepine therapy. Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. "Product Information. Valium (diazepam)." Roche Laboratories PROD (2002):
  4. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  5. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  6. "Product Information. Doral (quazepam)." Wallace Laboratories PROD (2001):
  7. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  8. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  9. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  10. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  11. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  12. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  13. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  14. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  15. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  16. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  17. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  18. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  19. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  20. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  22. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  23. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  24. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  25. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  26. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  27. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  28. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  29. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  30. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  31. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  32. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  33. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  34. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 34 references

Switch to consumer interaction data

Minor

diazePAM food

Applies to: Valrelease (diazepam)

One study has reported a 22% reduction in diazepam plasma levels when coadministered with caffeine. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that changes to caffeine consumption habits may impact the efficacy of diazepam therapy.

References

  1. Ghoneim MM, Hinrichs JV, Chiang CK, Loke WH "Pharmacokinetic and pharmacodynamic interactions between caffeine and diazepam." J Clin Psychopharmacol 6 (1986): 75-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.