Skip to main content

Drug Interactions between Avinza and voclosporin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

morphine voclosporin

Applies to: Avinza (morphine) and voclosporin

MONITOR CLOSELY: Coadministration with P-glycoprotein (P-gp) inhibitors may increase the plasma concentrations of morphine and its risk of adverse effects, including hypotension, respiratory and CNS depression, profound sedation, coma, and death. The proposed mechanism may involve inhibition of the intestinal P-gp efflux transporter, resulting in enhanced oral bioavailability of morphine, a P-gp substrate. The interaction may be more significant for orally administered morphine. According to some authorities, the concomitant use of a P-gp inhibitor with oral morphine may increase the systemic exposure of morphine by approximately 2-fold. However, in a pharmacokinetic study involving 12 healthy subjects, itraconazole (200 mg daily for 4 days), a strong P-gp inhibitor, increased the morphine (0.3 mg/kg as a single oral dose) peak plasma concentration (Cmax) and systemic exposure (AUC) by 28% and 22%, respectively. Plasma concentrations of intravenously administered morphine appear less affected. In a crossover study involving 14 healthy volunteers, intravenous administration of P-gp inhibitor cyclosporine followed by an intravenous infusion of morphine 0.1 mg/kg led to a minimal increase of morphine AUC to 100 ng/mL*h compared to 85 ng/mL*h when administered after control (no infusion). In the same study, cyclosporine appeared to prolong morphine-induced miosis.

MANAGEMENT: Caution is recommended whenever morphine, particularly orally administered morphine, is used concomitantly with a P-gp inhibitor. Close clinical and laboratory monitoring should be considered whenever a P-gp inhibitor is added to or withdrawn from therapy, and the morphine dosage adjusted as necessary. Patients should be monitored closely for signs and symptoms of respiratory depression and sedation that may be greater than otherwise expected. In addition, patients should be advised to avoid driving or operating hazardous machinery until they know how these medications affect them.

References

  1. (2002) "Product Information. MS Contin (morphine)." Purdue Frederick Company
  2. (2001) "Product Information. Kadian (morphine)." Astra-Zeneca Pharmaceuticals
  3. Kharasch ED, Hoffer C, Whittington D, Sheffels P (2003) "Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine." Clin Pharmacol Ther, 74, p. 543-54
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Cerner Multum, Inc. "Australian Product Information."
  6. Meissner K, Avram MJ, Yermolenka V, Francis AM, Blood J, Kharasch ED (2013) "Cyclosporine-inhibitable Blood-Brain Barrier Drug Transport Influences Clinical Morphine Pharmacodynamics." Anesthesiology
  7. Heiskanen T, Backman JT, Neuvonen M, Kontinen VK, Neuvonen PJ, Kalso E (2008) "Itraconazole, a potent inhibitor of P-glycoprotein, moderately increases plasma concentrations of oral morphine." Acta Anaesthesiol Scand, 52, p. 1319-26
View all 7 references

Switch to consumer interaction data

Drug and food interactions

Major

morphine food

Applies to: Avinza (morphine)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including morphine and diamorphine. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Consumption of alcohol while taking some sustained-release formulations of morphine may cause rapid release of the drug, resulting in high systemic levels of morphine that may be potentially lethal. Alcohol apparently can disrupt the release mechanism of some sustained-release formulations. The interaction was observed in in vitro studies using a 24-hour morphine formulation (Avinza 30 mg capsule, available in the U.S. from Ligand Pharmaceuticals). When the capsule was mixed with 900 mL of buffer solutions containing ethanol 20% and 40%, the dose of morphine that was released was alcohol concentration-dependent, leading to a more rapid release of morphine. Although the clinical relevance of this finding is unknown, 'dose-dumping' into the bloodstream is conceivable.

MANAGEMENT: Until more information is available, patients taking sustained-release formulations of morphine should not consume alcohol or use medications that contain alcohol. In general, potent narcotics such as morphine or diamorphine should not be combined with alcohol.

References

  1. (2005) "Product Information. Avinza (morphine)." Ligand Pharmaceuticals
  2. Ghalie R (2005) Dear Health Care Professional. http://www.fda.gov/medwatch/safety/2005/AVINZA_DHCP_Letter_Oct2005.pdf
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Cerner Multum, Inc. (2015) "Canadian Product Information."
View all 4 references

Switch to consumer interaction data

Major

voclosporin food

Applies to: voclosporin

GENERALLY AVOID: Coadministration with grapefruit juice may increase the plasma concentrations of voclosporin. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Because voclosporin prolongs the QT interval in a dose-dependent manner, high plasma levels of voclosporin may increase the risk of ventricular arrhythmias such as ventricular tachycardia, ventricular fibrillation, and torsade de pointes. In drug interaction studies, coadministration with multiple doses of moderate CYP450 3A4 inhibitors fluconazole or diltiazem is predicted to increase the peak plasma concentration (Cmax) and the area under the 12-hour plasma concentration-time curve (AUC 0-12) of voclosporin by approximately 2- and 3-fold respectively. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict. In addition, moderate-to-high dietary intake of potassium, especially salt substitutes, may increase the risk of hyperkalemia in some patients who are using voclosporin, which has been reported with the use of voclosporin. Patients with diabetes, heart failure, dehydration, or renal insufficiency have a greater risk of developing hyperkalemia.

ADJUST DOSING INTERVAL: Consumption of food can decrease the rate and extent of gastrointestinal absorption of voclosporin. When administered with either low- or high-fat meals, the peak plasma concentration (Cmax) of voclosporin decreased by 29% to 53% and systemic exposure (AUC) decreased by 15% to 25%.

MANAGEMENT: Patients receiving voclosporin therapy should be advised to avoid consumption of grapefruit or grapefruit juice. Voclosporin therapy should be administered at least 1 hour before or 2 hours after meals. Patients should also receive dietary counseling and be advised to not use potassium-containing salt substitutes or over-the-counter potassium supplements without consulting their doctor. If salt substitutes are used concurrently, regular monitoring of serum potassium levels is recommended. Patients should also be advised to seek medical attention if they experience symptoms of hyperkalemia such as weakness, irregular heartbeat, confusion, tingling of the extremities, or feelings of heaviness in the legs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
  33. (2021) "Product Information. Lupkynis (voclosporin)." Aurinia Pharma
View all 33 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.