Skip to main content

Drug Interactions between AccessPak for HIV PEP Expanded with Kaletra and Proquin XR

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

ciprofloxacin lopinavir

Applies to: Proquin XR (ciprofloxacin) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

GENERALLY AVOID: Lopinavir in combination with ritonavir may cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In a study of 39 healthy adults who were administered lopinavir-ritonavir at a therapeutic dosage of 400 mg-100 mg twice daily and a supratherapeutic dosage of 800 mg-200 mg twice daily, the maximum mean time-matched difference in QTcF interval from placebo (after baseline correction) was 5.3 msec for the lower dosage and 15.2 msec for the supratherapeutic dosage in the 12 hours post-dose on treatment day 3 when exposures were approximately 1.5 and 3-fold higher, respectively, than those observed with recommended once-daily or twice-daily dosages of lopinavir-ritonavir at steady state. No subject experienced an increase in QTcF greater than 60 msec from baseline or a QTcF interval exceeding the potentially clinically relevant threshold of 500 msec. There have been cases of QT interval prolongation and torsade de pointes arrhythmia during postmarketing use of lopinavir-ritonavir, although causality could not be established. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Coadministration of lopinavir-ritonavir with other drugs that can prolong the QT interval should generally be avoided. Patients treated with any medication that can cause QT prolongation should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical
  2. Anson BD, Weaver JG, Ackerman MJ, et al. (2005) "Blockade of HERG channels by HIV protease inhibitors." Lancet, 365, p. 682-686
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  5. Cerner Multum, Inc. "Australian Product Information."
View all 5 references

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

ciprofloxacin food

Applies to: Proquin XR (ciprofloxacin)

ADJUST DOSING INTERVAL: Concurrent ingestion of dairy products (milk, yogurt) or calcium-fortified foods (i.e., cereal, orange juice) may decrease the activity of certain oral fluoroquinolone antibiotics. The mechanism is chelation of calcium and the quinolone, resulting in decreased bioavailability. In the case of orange juice, inhibition of intestinal transport mechanisms (P-glycoprotein or organic anion-transporting polypeptides) by flavones may also be involved. One study reported an average 41% decrease in maximum plasma concentrations and a 38% decrease in AUC when ciprofloxacin was given with calcium-fortified orange juice instead of water. Administration of ciprofloxacin tablets with enteral nutrition may reduce its bioavailability and maximum serum concentrations. Data have been conflicting and variable by the type of enteral nutrition product, location of the feeding tube, and patient characteristics. Decreased absorption is expected if ciprofloxacin is given by jejunostomy tube.

MANAGEMENT: Oral ciprofloxacin should not be taken with dairy products or calcium-fortified foods alone, but may be taken with meals that contain these products. When taken alone, dairy products or calcium-fortified foods should be ingested at least 2 hours before or after ciprofloxacin administration. When ciprofloxacin tablets are administered to patients receiving continuous enteral nutrition, some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 2 hours after the dose of ciprofloxacin is given. Patients should be monitored for altered antimicrobial efficacy and switched to intravenous ciprofloxacin if necessary. If no enteral route besides a jejunostomy tube is available, it is also recommended to switch to intravenous ciprofloxacin. According to the manufacturer, ciprofloxacin oral suspension should not be administered via nasogastric or feeding tubes due to its physical characteristics.

References

  1. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  2. Yuk JH, Nightingale CH, Sweeney KR, Quintiliani R, Lettieri JT, Forst RW (1989) "Relative bioavailability in healthy volunteers of ciprofloxacin administered through a nasogastric tube with and without enteral feeding." Antimicrob Agents Chemother, 33, p. 1118-20
  3. Yuk JH, Nightingale CH, Quintiliani R (1990) "Absorption of ciprofloxacin administered through a nasogastric or a nasoduodenal tube in volunteers and patients receiving enteral nutrition." Diagn Microbiol Infect Dis, 13, p. 99-102
  4. Noer BL, Angaran DW (1990) "The effect of enteral feedings on ciprofloxacin pharmacokinetics." Pharmacotherapy, 10, p. 254
  5. Neuhofel AL, Wilton JH, Victory JM, Hejmanowsk LG, Amsden GW (2002) "Lack of bioequivalence of ciprofloxacin when administered with calcium-fortified orange juice: a new twist on an old interaction." J Clin Pharmacol, 42, p. 461-6
  6. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
View all 6 references

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

ciprofloxacin food

Applies to: Proquin XR (ciprofloxacin)

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of quinolone antibiotics. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of quinolones by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract. The bioavailability of ciprofloxacin has been reported to decrease by as much as 90% when administered with antacids containing aluminum or magnesium hydroxide.

MANAGEMENT: When coadministration cannot be avoided, quinolone antibiotics should be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation-containing products to minimize the potential for interaction. When coadministered with Suprep Bowel Prep (magnesium/potassium/sodium sulfates), the manufacturer recommends administering fluoroquinolone antibiotics at least 2 hours before and not less than 6 hours after Suprep Bowel Prep to avoid chelation with magnesium. Please consult individual product labeling for specific recommendations.

References

  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
  5. Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
  6. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
  7. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
  8. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
  9. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
  10. Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
  11. Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
  12. Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
  13. Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
  14. Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
  15. Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
  16. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
  17. Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
  18. Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
  19. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  20. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  21. (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
  22. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  23. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
  24. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
  25. Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
  26. Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
  27. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
  28. Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
  29. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
  30. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  31. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
  32. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
View all 32 references

Switch to consumer interaction data

Moderate

ciprofloxacin food

Applies to: Proquin XR (ciprofloxacin)

MONITOR: Coadministration with certain quinolones may increase the plasma concentrations and pharmacologic effects of caffeine due to inhibition of the CYP450 1A2 metabolism of caffeine. Quinolones that may inhibit CYP450 1A2 include ciprofloxacin, enoxacin, grepafloxacin, nalidixic acid, norfloxacin, pipemidic acid, and pefloxacin (not all commercially available). In healthy volunteers, enoxacin (100 to 400 mg twice daily) increased systemic exposure (AUC) of caffeine by 2- to 5-fold and reduced its clearance by approximately 80%. Pipemidic acid (400 to 800 mg twice daily) increased AUC of caffeine by 2- to 3-fold and reduced its clearance by approximately 60%. Ciprofloxacin (250 to 750 mg twice daily) increased AUC and elimination half-life of caffeine by 50% to over 100%, and reduced its clearance by 30% to 50%. Norfloxacin 400 mg twice daily increased caffeine AUC by 16%, while 800 mg twice daily increased caffeine AUC by 52% and reduced its clearance by 35%. Pefloxacin (400 mg twice daily) has been shown to reduce caffeine clearance by 47%.

MANAGEMENT: Patients using caffeine-containing products should be advised that increased adverse effects such as headache, tremor, restlessness, nervousness, insomnia, tachycardia, and blood pressure increases may occur during coadministration with quinolones that inhibit CYP450 1A2. Caffeine intake should be limited when taking high dosages of these quinolones. If an interaction is suspected, other quinolones such as gatifloxacin, gemifloxacin, levofloxacin, lomefloxacin, moxifloxacin, and ofloxacin may be considered, since they are generally believed to have little or no effect on CYP450 1A2 or have been shown not to interact with caffeine.

References

  1. Polk RE (1989) "Drug-drug interactions with ciprofloxacin and other fluoroquinolones." Am J Med, 87, s76-81
  2. Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML (1989) "Interaction between oral ciprofloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother, 33, p. 474-8
  3. Harder S, Fuhr U, Staib AH, Wolf T (1989) "Ciprofloxacin-caffeine: a drug interaction established using in vivo and in vitro investigations." Am J Med, 87, p. 89-91
  4. Carbo ML, Segura J, De la Torre R, et al. (1989) "Effect of quinolones on caffeine disposition." Clin Pharmacol Ther, 45, p. 234-40
  5. (1993) "Product Information. Penetrax (enoxacin)." Rhone-Poulenc Rorer, Collegeville, PA.
  6. Mahr G, Sorgel F, Granneman GR, et al. (1992) "Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine." Clin Pharmacokinet, 22, p. 90-7
  7. (2002) "Product Information. Cipro (ciprofloxacin)." Bayer
  8. (2001) "Product Information. Noroxin (norfloxacin)." Merck & Co., Inc
  9. Staib AH, Stille W, Dietlein G, et al. (1987) "Interaction between quinolones and caffeine." Drugs, 34 Suppl 1, p. 170-4
  10. Stille W, Harder S, Micke S, et al. (1987) "Decrease of caffeine elimination in man during co-administration of 4-quinolones." J Antimicrob Chemother, 20, p. 729-34
  11. Harder S, Staib AH, Beer C, Papenburg A, Stille W, Shah PM (1988) "4-Quinolones inhibit biotransformation of caffeine." Eur J Clin Pharmacol, 35, p. 651-6
  12. Nicolau DP, Nightingale CH, Tessier PR, et al. (1995) "The effect of fleroxacin and ciprofloxacin on the pharmacokinetics of multiple dose caffeine." Drugs, 49 Suppl 2, p. 357-9
  13. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  14. Carrillo JA, Benitez J (2000) "Clinically significant pharmacokinetic interactions between dietary caffeine and medications." Clin Pharmacokinet, 39, p. 127-53
  15. Fuhr U, Wolff T, Harder S, Schymanski P, Staib AH (1990) "Quinolone inhibition of cytochrome P-450 dependent caffeine metabolism in human liver microsomes." Drug Metab Dispos, 18, p. 1005-10
  16. Kinzig-Schippers M, Fuhr U, Zaigler M, et al. (1999) "Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2." Clin Pharmacol Ther, 65, p. 262-74
  17. Healy DP, Schoenle JR, Stotka J, Polk RE (1991) "Lack of interaction between lomefloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother, 35, p. 660-4
View all 17 references

Switch to consumer interaction data

Minor

tenofovir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.