Skip to main content

Drug Interactions between tirzepatide and Tri-Sprintec

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

ethinyl estradiol tirzepatide

Applies to: Tri-Sprintec (ethinyl estradiol / norgestimate) and tirzepatide

ADDITIONAL CONTRACEPTION RECOMMENDED: Tirzepatide can delay gastric emptying, which may reduce the absorption and efficacy of orally administered hormonal contraceptives. The impact on gastric emptying has been reported to be dose- and time-dependent, with the greatest effect observed after a single 5 mg dose but diminished after subsequent doses. Tirzepatide at lower doses of 0.5 mg and 1.5 mg had minimal effects, and no significant impact was observed after 4 consecutive weekly doses of tirzepatide (5 mg/5 mg/8 mg/10 mg). When a combined oral contraceptive containing ethinyl estradiol 0.035 mg and norgestimate 0.25 mg was administered in the presence of a single dose of tirzepatide 5 mg, the mean peak plasma concentration (Cmax) of ethinyl estradiol, norgestimate and norelgestromin (the active metabolite of norgestimate) decreased by 59%, 66% and 55%, respectively, while mean systemic exposure (AUC) decreased by 20%, 21% and 23%, respectively. The time to peak plasma concentration (Tmax) was also delayed by 4 hours for ethinyl estradiol, 2.5 hours for norgestimate, and 4.5 hours for norelgestromin. These changes are not considered clinically relevant by some authorities; however, doses other than a single 5 mg dose of tirzepatide have not been studied.

MANAGEMENT: The manufacturer recommends that women of childbearing potential using oral hormonal contraceptives should be advised to switch to alternative, non-oral methods of birth control. Otherwise, additional non-hormonal options such as barrier contraceptive methods should be used for 4 weeks after starting tirzepatide and for 4 weeks after each dose escalation. These precautions are not necessary for women receiving injectable, transdermal, and implantable forms of hormonal contraceptives, as their systemic absorption should not be affected by gastric emptying time. Input from a gynecologist or similar expert on adequate contraception, including emergency contraception, should be sought as needed.

References

  1. (2023) "Product Information. Mounjaro (tirzepatide)." Eli Lilly and Company Ltd
  2. (2023) "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company
  3. Eli Lilly Canada Inc. (2023) Product monograph including patient medication information MOUNJARO tirzepatide injection. https://pdf.hres.ca/dpd_pm/00068421.PDF

Switch to consumer interaction data

Moderate

norgestimate tirzepatide

Applies to: Tri-Sprintec (ethinyl estradiol / norgestimate) and tirzepatide

ADDITIONAL CONTRACEPTION RECOMMENDED: Tirzepatide can delay gastric emptying, which may reduce the absorption and efficacy of orally administered hormonal contraceptives. The impact on gastric emptying has been reported to be dose- and time-dependent, with the greatest effect observed after a single 5 mg dose but diminished after subsequent doses. Tirzepatide at lower doses of 0.5 mg and 1.5 mg had minimal effects, and no significant impact was observed after 4 consecutive weekly doses of tirzepatide (5 mg/5 mg/8 mg/10 mg). When a combined oral contraceptive containing ethinyl estradiol 0.035 mg and norgestimate 0.25 mg was administered in the presence of a single dose of tirzepatide 5 mg, the mean peak plasma concentration (Cmax) of ethinyl estradiol, norgestimate and norelgestromin (the active metabolite of norgestimate) decreased by 59%, 66% and 55%, respectively, while mean systemic exposure (AUC) decreased by 20%, 21% and 23%, respectively. The time to peak plasma concentration (Tmax) was also delayed by 4 hours for ethinyl estradiol, 2.5 hours for norgestimate, and 4.5 hours for norelgestromin. These changes are not considered clinically relevant by some authorities; however, doses other than a single 5 mg dose of tirzepatide have not been studied.

MANAGEMENT: The manufacturer recommends that women of childbearing potential using oral hormonal contraceptives should be advised to switch to alternative, non-oral methods of birth control. Otherwise, additional non-hormonal options such as barrier contraceptive methods should be used for 4 weeks after starting tirzepatide and for 4 weeks after each dose escalation. These precautions are not necessary for women receiving injectable, transdermal, and implantable forms of hormonal contraceptives, as their systemic absorption should not be affected by gastric emptying time. Input from a gynecologist or similar expert on adequate contraception, including emergency contraception, should be sought as needed.

References

  1. (2023) "Product Information. Mounjaro (tirzepatide)." Eli Lilly and Company Ltd
  2. (2023) "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company
  3. Eli Lilly Canada Inc. (2023) Product monograph including patient medication information MOUNJARO tirzepatide injection. https://pdf.hres.ca/dpd_pm/00068421.PDF

Switch to consumer interaction data

Drug and food interactions

Moderate

norgestimate food

Applies to: Tri-Sprintec (ethinyl estradiol / norgestimate)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

tirzepatide food

Applies to: tirzepatide

MONITOR: Glucagon-like peptide-1 (GLP-1) receptor agonists and dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists can delay gastric emptying, which may impact the absorption of concomitantly administered oral medications. Mild to moderate decreases in plasma concentrations of coadministered drugs have been demonstrated in pharmacokinetic studies for some GLP-1 receptor agonists (e.g., exenatide, lixisenatide), but not others. According to the prescribing information, liraglutide did not affect the absorption of several orally administered drugs to any clinically significant extent, including acetaminophen, atorvastatin, digoxin, griseofulvin, lisinopril, and an oral contraceptive containing ethinyl estradiol-levonorgestrel. Likewise, no clinically relevant effect on absorption was observed for concomitantly administered oral drugs studied with albiglutide (digoxin, ethinyl estradiol-norethindrone, simvastatin, warfarin), dulaglutide (acetaminophen, atorvastatin, digoxin, ethinyl estradiol-norelgestromin, lisinopril, metformin, metoprolol, sitagliptin, warfarin), or semaglutide (atorvastatin, digoxin, ethinyl estradiol-levonorgestrel, metformin, warfarin). The impact of dual GLP-1 and GIP receptor agonist tirzepatide on gastric emptying was reported to be dose- and time-dependent, with the greatest effect observed after a single 5 mg dose but diminished after subsequent doses. When acetaminophen was administered following a single 5 mg dose of tirzepatide, acetaminophen peak plasma concentration (Cmax) was decreased by 50% and its median time to peak plasma concentration (Tmax) delayed by 1 hour. However, no significant impact on acetaminophen Cmax and Tmax was observed after 4 consecutive weekly doses of tirzepatide (5 mg/5 mg/8 mg/10 mg), and the overall exposure (AUC) of acetaminophen was unaffected. Tirzepatide at lower doses of 0.5 mg and 1.5 mg also had minimal effects on acetaminophen exposure.

MANAGEMENT: Although no specific dosage adjustment of concomitant medications is generally recommended based on available data, potential clinical impact on some oral medications cannot be ruled out, particularly those with a narrow therapeutic index or low bioavailability, those that depend on threshold concentrations for efficacy (e.g., antibiotics), and those that require rapid gastrointestinal absorption (e.g., hypnotics, analgesics). Pharmacologic response to concomitantly administered oral medications should be monitored more closely following initiation, dose adjustment, or discontinuation of a GLP-1 receptor agonist or a dual GLP-1 and GIP receptor agonist.

References

  1. (2005) "Product Information. Byetta (exenatide)." Amylin Pharmaceuticals Inc
  2. (2010) "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc
  3. (2014) "Product Information. Tanzeum (albiglutide)." GlaxoSmithKline
  4. (2014) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company
  5. (2016) "Product Information. Adlyxin (lixisenatide)." sanofi-aventis
  6. (2022) "Product Information. Ozempic (1 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc
  7. (2023) "Product Information. Mounjaro (tirzepatide)." Eli Lilly and Company Ltd
  8. (2023) "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company
  9. Eli Lilly Canada Inc. (2023) Product monograph including patient medication information MOUNJARO tirzepatide injection. https://pdf.hres.ca/dpd_pm/00068421.PDF
View all 9 references

Switch to consumer interaction data

Minor

ethinyl estradiol food

Applies to: Tri-Sprintec (ethinyl estradiol / norgestimate)

Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.

References

  1. Weber A, Jager R, Borner A, et al. (1996) "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception, 53, p. 41-7
  2. Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T (1995) "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet, 20, p. 219-24

Switch to consumer interaction data

Minor

ethinyl estradiol food

Applies to: Tri-Sprintec (ethinyl estradiol / norgestimate)

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM (1985) "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther, 38, p. 371-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.