Skip to main content

Drug Interactions between Proben-C and Teczem

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

dilTIAZem colchicine

Applies to: Teczem (diltiazem / enalapril) and Proben-C (colchicine / probenecid)

ADJUST DOSE: Coadministration with inhibitors of CYP450 3A4 may significantly increase the serum concentrations of colchicine, which is primarily metabolized by the isoenzyme. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. In one case report, a patient with familial Mediterranean fever and amyloidosis involving the kidney, liver, and gastrointestinal tract was admitted to the hospital with life-threatening colchicine toxicity after a two-week course of erythromycin, a moderate CYP450 3A4 inhibitor. During the year prior to admission, the patient had developed recurrent diarrhea and abdominal pain and demonstrated toxic levels of colchicine on two occasions. It is likely the patient had acute colchicine toxicity brought on by the addition of erythromycin and superimposed on chronic colchicine intoxication secondary to renal and hepatic impairment. The patient improved with supportive therapy and intensive hemodialysis and was discharged on day 70 of hospitalization. Another report describes two fatal cases of agranulocytosis due to presumed interaction between colchicine and clarithromycin, a potent CYP450 3A4 inhibitor. Risk factors include mild liver function test abnormalities in one patient and end-stage renal failure in the other. Several other cases of suspected interaction with clarithromycin have also been reported in which patients developed rhabdomyolysis, pancytopenia, or neuromyopathy during treatment with colchicine. In most cases, concomitant risk factors such as preexisting renal and/or hepatic impairment were present. In a retrospective study of 116 patients who were prescribed clarithromycin and colchicine during the same hospital admission, 9 out of 88 patients (10.2%) who received the two drugs concomitantly died, compared to only 1 of 28 patients (3.6%) who received the drugs sequentially. The rate of pancytopenia was 10.2% in the concomitant group versus 0% in the sequential group. Multivariate analysis of the patients who received concomitant therapy found that longer overlapped therapy, the presence of baseline renal impairment, and the development of pancytopenia were independently associated with death. Overall, the risk of death was increased 25-fold in patients who received concomitant therapy and who developed pancytopenia.

MANAGEMENT: Caution is advised if colchicine is prescribed in combination with moderate CYP450 3A4 inhibitors. In patients with normal renal and hepatic function, the dosage of colchicine should be reduced when used with moderate CYP450 3A4 inhibitors or within 14 days of using them. For the treatment of acute gout flares, the adjusted dosage recommended is 1.2 mg for one dose. Administration should not be repeated for at least three days. For the prophylaxis of gout flares, the adjusted dosage should be 0.3 mg twice a day (or 0.6 mg once a day) if the original regimen was 0.6 mg twice a day, and 0.3 mg once a day if the original regimen was 0.6 once a day. For the treatment of familial Mediterranean fever, the maximum dosage of colchicine is 1.2 mg/day (may be given as 0.6 mg twice a day) when used in the presence of moderate CYP450 3A4 inhibitors. Other significant inhibitors of CYP450 3A4 include amiodarone, dronedarone, imatinib, posaconazole, and quinupristin-dalfopristin, although the extent to which they may interact with colchicine is unknown. A similar dosage adjustment may be required. Patients should be advised to contact their physician if they experience symptoms of toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness.

References

  1. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol 19 (1992): 494-6
  2. Schiff D, Drislane FW "Rapid-onset colchicine myoneuropathy." Arthritis Rheum 35 (1992): 1535-6
  3. Putterman C, Ben-Chetrit E, Caraco Y, Levy M "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum 21 (1991): 143-55
  4. Boomershine KH "Colchicine-induced rhabdomyolysis." Ann Pharmacother 36 (2002): 824-6
  5. "Severe colchicine-macrolide interactions." Prescrire Int 12 (2003): 18-9
  6. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol 53 (1996): 111-6
  7. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol 55 (2001): 181-2
  8. "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline (2003):
  9. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother 38 (2004): 2074-7
  10. Wilbur K, Makowsky M "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy 24 (2004): 1784-92
  11. Hung IF, Wu AK, Cheng VC, et al. "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis 41 (2005): 291-300
  12. Cheng VC, Ho PL, Yuen KY "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J 98 (2005): 811-3
  13. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol 19 (2006): 515-7
  14. van der Velden W, Huussen J, Ter Laak H, de Sevaux R "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med 66 (2008): 204-6
  15. "Colchicine: serious interactions." Prescrire Int 17 (2008): 151-3
  16. "Product Information. Colcrys (colchicine)." AR Scientific Inc (2009):
  17. McKinnell J, Tayek JA "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol 15 (2009): 303-5
View all 17 references

Switch to consumer interaction data

Minor

enalapril probenecid

Applies to: Teczem (diltiazem / enalapril) and Proben-C (colchicine / probenecid)

Probenecid may decrease the renal clearance of ACE inhibitors. Plasma levels and antihypertensive effects of ACE inhibitors may be increased. Data are available for captopril only. Although no adverse effects have been reported in study subjects, the patient's blood pressure should be monitored during coadministration.

References

  1. Singhvi SM, Duchin KL, Willard DA, et al. "Renal handling of captopril: effect of probenecid." Clin Pharmacol Ther 32 (1982): 182-9
  2. Drummer OH, Thompson J, Hooper R, Jarrott B "Effect of probenecid on the disposition of captopril and captopril dimer in the rat." Biochem Pharmacol 34 (1985): 3347-51

Switch to consumer interaction data

Minor

enalapril dilTIAZem

Applies to: Teczem (diltiazem / enalapril) and Teczem (diltiazem / enalapril)

Calcium channel blockers and angiotensin converting enzyme (ACE) inhibitors may have additive hypotensive effects. While these drugs are often safely used together, careful monitoring of the systemic blood pressure is recommended during coadministration, especially during the first one to three weeks of therapy.

References

  1. Kaplan NM "Amlodipine in the treatment of hypertension." Postgrad Med J 67 Suppl 5 (1991): s15-9
  2. DeQuattro V "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol 14 (1991): iv28-32;
  3. Sun JX, Cipriano A, Chan K, John VA "Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects." Eur J Clin Pharmacol 47 (1994): 285-9
  4. Di Somma S, et al. "Antihypertensive effects of verapamil, captopril and their combination at rest and during dynamic exercise." Arzneimittelforschung 42 (1992): 103
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Major

colchicine food

Applies to: Proben-C (colchicine / probenecid)

GENERALLY AVOID: Coadministration with grapefruit juice may increase the serum concentrations of colchicine. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism and P-glycoprotein efflux in the gut wall by certain compounds present in grapefruits. A published case report describes an eight-year-old patient with familial Mediterranean fever who developed acute clinical colchicine intoxication after ingesting approximately one liter of grapefruit juice per day for two months prior to hospital admission while being treated with colchicine 2 mg/day. Her condition progressed to circulatory shock and multiorgan failure, but she recovered with supportive therapy after 24 days in the hospital. In a study of 21 healthy volunteers, administration of 240 mL grapefruit juice twice a day for 4 days was found to have no significant effect on the pharmacokinetics of a single 0.6 mg dose of colchicine. However, significant interactions have been reported with other CYP450 3A4 inhibitors such as clarithromycin, diltiazem, erythromycin, ketoconazole, ritonavir, and verapamil.

MANAGEMENT: Patients treated with colchicine should be advised to avoid the consumption of grapefruit and grapefruit juice, and to contact their physician if they experience symptoms of colchicine toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness.

References

  1. Pettinger WA "Clonidine, a new antihypertensive drug." N Engl J Med 293 (1975): 1179-80
  2. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol 19 (1992): 494-6
  3. Schiff D, Drislane FW "Rapid-onset colchicine myoneuropathy." Arthritis Rheum 35 (1992): 1535-6
  4. Putterman C, Ben-Chetrit E, Caraco Y, Levy M "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum 21 (1991): 143-55
  5. Boomershine KH "Colchicine-induced rhabdomyolysis." Ann Pharmacother 36 (2002): 824-6
  6. "Severe colchicine-macrolide interactions." Prescrire Int 12 (2003): 18-9
  7. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol 53 (1996): 111-6
  8. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol 55 (2001): 181-2
  9. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother 38 (2004): 2074-7
  10. Wilbur K, Makowsky M "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy 24 (2004): 1784-92
  11. Hung IF, Wu AK, Cheng VC, et al. "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis 41 (2005): 291-300
  12. Cheng VC, Ho PL, Yuen KY "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J 98 (2005): 811-3
  13. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol 19 (2006): 515-7
  14. van der Velden W, Huussen J, Ter Laak H, de Sevaux R "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med 66 (2008): 204-6
  15. Goldbart A, Press J, Sofer S, Kapelushnik J "Near fatal acute colchicine intoxication in a child. A case report." Eur J Pediatr 159 (2000): 895-7
  16. "Colchicine: serious interactions." Prescrire Int 17 (2008): 151-3
  17. "Product Information. Colcrys (colchicine)." AR Scientific Inc (2009):
  18. Dahan A, Amidon GL "Grapefruit juice and its constitueants augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein." Pharm Res 26 (2009): 883-92
  19. McKinnell J, Tayek JA "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol 15 (2009): 303-5
View all 19 references

Switch to consumer interaction data

Moderate

enalapril food

Applies to: Teczem (diltiazem / enalapril)

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References

  1. "Product Information. Vasotec (enalapril)." Merck & Co., Inc PROD (2002):
  2. Good CB, McDermott L "Diet and serum potassium in patients on ACE inhibitors." JAMA 274 (1995): 538
  3. Ray K, Dorman S, Watson R "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens 13 (1999): 717-20

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Teczem (diltiazem / enalapril)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie 49 (1994): 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol 58 (2002): 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 5 references

Switch to consumer interaction data

Moderate

enalapril food

Applies to: Teczem (diltiazem / enalapril)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Teczem (diltiazem / enalapril)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med 3 (1985): 334-6
  2. Moller IW "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth 59 (1987): 522-6
  3. Oszko MA, Klutman NE "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm 6 (1987): 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol 67 (1991): 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy 10 (1990): 247
  6. Woie L, Storstein L "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J 2 (1981): 239-42
  7. Morris DL, Goldschlager N "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA 249 (1983): 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol 27 (1987): 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M "Calcium gluconate in severe verapamil intoxication." N Engl J Med 330 (1994): 718-20
  10. Bar-Or D, Gasiel Y "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed) 282 (1981): 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med 8 (1982): 55-7
  12. McMillan R "Management of acute severe verapamil intoxication." J Emerg Med 6 (1988): 193-6
  13. Perkins CM "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J 2 (1978): 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol 17 (1980): 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.