Skip to main content

Drug Interactions between pexidartinib and Proben-C

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

probenecid pexidartinib

Applies to: Proben-C (colchicine / probenecid) and pexidartinib

GENERALLY AVOID: Coadministration of pexidartinib with strong CYP450 3A4 inhibitors and/or uridine diphosphate glucuronosyltransferase (UGT) inhibitors may significantly increase the plasma concentrations and the incidence and severity of adverse effects of pexidartinib, including potentially fatal hepatotoxicity. The proposed mechanism is inhibition of CYP450 3A4 and/or UGT, the primary isoenzymes responsible for the metabolic clearance of pexidartinib. Concomitant administration of itraconazole, a strong CYP450 3A4 inhibitor, increased pexidartinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 48% and 70%, respectively. Coadministration with probenecid, a UGT inhibitor, increased pexidartinib Cmax and AUC by 5% and 60%, respectively.

MANAGEMENT: The use of pexidartinib with strong CYP450 3A4 inhibitors and/or UGT inhibitors should generally be avoided. If concomitant use is required, the dose of pexidartinib should be reduced according to the manufacturer's recommendations. If concomitant use of a strong CYP450 3A4 inhibitor or UGT inhibitor is discontinued, the dose of pexidartinib may be increased, after 3 plasma half-lives of the strong CYP450 3A4 inhibitor or UGT inhibitor, to the dose that was used prior to starting the strong CYP450 3A4 inhibitor or UGT inhibitor.

References

  1. (2019) "Product Information. Turalio (pexidartinib)." Daiichi Sankyo, Inc.

Switch to consumer interaction data

Drug and food interactions

Major

colchicine food

Applies to: Proben-C (colchicine / probenecid)

GENERALLY AVOID: Coadministration with grapefruit juice may increase the serum concentrations of colchicine. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism and P-glycoprotein efflux in the gut wall by certain compounds present in grapefruits. A published case report describes an eight-year-old patient with familial Mediterranean fever who developed acute clinical colchicine intoxication after ingesting approximately one liter of grapefruit juice per day for two months prior to hospital admission while being treated with colchicine 2 mg/day. Her condition progressed to circulatory shock and multiorgan failure, but she recovered with supportive therapy after 24 days in the hospital. In a study of 21 healthy volunteers, administration of 240 mL grapefruit juice twice a day for 4 days was found to have no significant effect on the pharmacokinetics of a single 0.6 mg dose of colchicine. However, significant interactions have been reported with other CYP450 3A4 inhibitors such as clarithromycin, diltiazem, erythromycin, ketoconazole, ritonavir, and verapamil.

MANAGEMENT: Patients treated with colchicine should be advised to avoid the consumption of grapefruit and grapefruit juice, and to contact their physician if they experience symptoms of colchicine toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness.

References

  1. Pettinger WA (1975) "Clonidine, a new antihypertensive drug." N Engl J Med, 293, p. 1179-80
  2. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E (1992) "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol, 19, p. 494-6
  3. Schiff D, Drislane FW (1992) "Rapid-onset colchicine myoneuropathy." Arthritis Rheum, 35, p. 1535-6
  4. Putterman C, Ben-Chetrit E, Caraco Y, Levy M (1991) "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum, 21, p. 143-55
  5. Boomershine KH (2002) "Colchicine-induced rhabdomyolysis." Ann Pharmacother, 36, p. 824-6
  6. (2003) "Severe colchicine-macrolide interactions." Prescrire Int, 12, p. 18-9
  7. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ (1996) "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol, 53, p. 111-6
  8. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C (2001) "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol, 55, p. 181-2
  9. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P (2004) "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother, 38, p. 2074-7
  10. Wilbur K, Makowsky M (2004) "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy, 24, p. 1784-92
  11. Hung IF, Wu AK, Cheng VC, et al. (2005) "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis, 41, p. 291-300
  12. Cheng VC, Ho PL, Yuen KY (2005) "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J, 98, p. 811-3
  13. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K (2006) "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol, 19, p. 515-7
  14. van der Velden W, Huussen J, Ter Laak H, de Sevaux R (2008) "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med, 66, p. 204-6
  15. Goldbart A, Press J, Sofer S, Kapelushnik J (2000) "Near fatal acute colchicine intoxication in a child. A case report." Eur J Pediatr, 159, p. 895-7
  16. (2008) "Colchicine: serious interactions." Prescrire Int, 17, p. 151-3
  17. (2009) "Product Information. Colcrys (colchicine)." AR Scientific Inc
  18. Dahan A, Amidon GL (2009) "Grapefruit juice and its constitueants augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein." Pharm Res, 26, p. 883-92
  19. McKinnell J, Tayek JA (2009) "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol, 15, p. 303-5
View all 19 references

Switch to consumer interaction data

Major

pexidartinib food

Applies to: pexidartinib

ADJUST DOSING INTERVAL: The presence of food may increase the absorption and toxicity of pexidartinib. Administration of pexidartinib with a high-fat meal increased peak plasma concentration (Cmax) and systemic exposure (AUC) by 100% and prolonged the time to reach peak plasma concentration (Tmax) by 2.5 hours.

GENERALLY AVOID: Grapefruit or grapefruit juice may increase the plasma concentration and risk of adverse effects of pexidartinib, including potentially fatal hepatotoxicity. The mechanism is inhibition of CYP450 3A4-mediated metabolism of pexidartinib by certain compounds present in grapefruits. Concomitant administration of itraconazole, a strong CYP450 3A4 inhibitor, increased pexidartinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 48% and 70%, respectively.

MANAGEMENT: Pexidartinib should be administered on an empty stomach, at least one hour before or two hours after a meal or snack. Consumption of grapefruit or grapefruit juice should generally be avoided during pexidartinib therapy. If concomitant use is unavoidable, the dose of pexidartinib should be reduced according to the manufacturer's recommendations. If concomitant use of grapefruit or grapefruit juice is discontinued, the dose of pexidartinib may be increased (after 3 plasma half-lives of a strong CYP450 3A4 inhibitor) to the dose that was used prior to consumption of grapefruit or grapefruit juice.

References

  1. (2019) "Product Information. Turalio (pexidartinib)." Daiichi Sankyo, Inc.

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.