Skip to main content

Drug Interactions between ozanimod and Tascenso ODT

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

fingolimod ozanimod

Applies to: Tascenso ODT (fingolimod) and ozanimod

MONITOR CLOSELY: Coadministration of fingolimod with antineoplastic, immunosuppressive, or other immune-modulating therapies may increase the risk of infections. Fingolimod causes reversible sequestration of lymphocytes in lymphoid tissues. When administered daily, fingolimod produces a dose-dependent reduction in peripheral lymphocyte count to 20% to 30% of baseline values, which may increase the risk of infections. A small study consisting of 12 subjects receiving fingolimod 0.5 mg daily found that lymphocyte count decreased to approximately 60% of baseline within 4 to 6 hours after the first dose and continued to decrease over a 2-week period, reaching a nadir count of approximately 500 cells/mcL, or 30% of baseline. In a placebo-controlled study of 1272 multiple sclerosis patients, 18% of patients on fingolimod 0.5 mg daily reached a nadir of less than 200 cells/mcL on at least one occasion, compared to no patient on placebo. Decreased lymphocyte counts persist during daily dosing and generally return to baseline within 1 to 2 months after stopping the medication. In addition, a mild decrease in the neutrophil count to approximately 80% of baseline occurs during chronic therapy. Serious infections requiring admission to hospital have been reported.

MANAGEMENT: The safety and efficacy of fingolimod in combination with antineoplastic, immunosuppressive, or immune-modulating agents have not been evaluated. Caution is advised during coadministration. A complete blood count is recommended prior to starting fingolimod if a recent one (i.e., within last 6 months) is not available. Treatment suspension should be considered in patients who develop a serious infection, and the benefits and risks reassessed prior to restarting treatment. Because fingolimod remains in the blood for up to two months after the last dose, continued monitoring is recommended throughout this period, and initiating other drugs during this period warrants the same considerations needed for concomitant administration.

MONITOR CLOSELY: Due to its significant bradycardic effects, the risk of QT prolongation and torsade de pointes arrhythmia may be increased during initiation of fingolimod treatment in patients receiving drugs that prolong the QT interval. Fingolimod can cause a decrease in heart rate during initiation of therapy that is apparent within an hour of the first dose and maximal at approximately 6 hours post-dose in most cases, but occasionally up to 20 hours after the first dose. Further, but smaller decreases in heart rate may occur after the second dose, although heart rate eventually returns to baseline within one month of chronic treatment. The mean decrease in heart rate in patients receiving fingolimod 0.5 mg at 6 hours after the first dose was approximately 13 beats per minute (bpm). Heart rates below 40 bpm and AV block were rarely observed. In a study evaluating the effect on QT interval of fingolimod 1.25 or 2.5 mg at steady-state, when a negative chronotropic effect of the drug was still present, fingolimod treatment resulted in a prolongation of the QTc, with an upper bound of the 90% confidence interval of 14.0 msec. There was no consistent signal of increased incidence of QTc outliers, either absolute or change from baseline, associated with fingolimod treatment. In clinical studies, investigators did not observed meaningful prolongation of the QT interval during fingolimod use, but patients at risk for QT prolongation were excluded. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Fingolimod has not been studied in patients receiving drugs that can prolong the QT interval. Because bradycardia and AV block are recognized risk factors for QT prolongation and torsade de pointes arrhythmia, close monitoring is recommended during initiation of fingolimod treatment in patients receiving concomitant drugs that can prolong the QT interval, patients with significant QT prolongation (QTc >470 msec in females or >450 msec in males), or patients with relevant risk factors for QT prolongation (e.g., hypokalemia, hypomagnesemia, congenital QT prolongation). Overnight continuous ECG monitoring after the first dose is recommended in accordance with the product labeling. Fingolimod should not be given if baseline QTc interval is 500 msec or greater. The same precautions are applicable if, after the first month of treatment, fingolimod is discontinued for more than two weeks and then restarted, since the effects on heart rate and AV conduction may recur on reintroduction of fingolimod. Within the first 2 weeks of treatment, first-dose procedures are also recommended after interruption of one day or more; during week 3 and 4 of treatment, first-dose procedures are recommended after treatment interruption of more than 7 days.

References

  1. (2010) "Product Information. Gilenya (fingolimod)." Novartis Pharmaceuticals
  2. FDA. U.S. Food and Drug Administration (2012) FDA Drug Safety Communication: Revised recommendations for cardiovascular monitoring and use of multiple sclerosis drug Gilenya (fingolimod). http://www.fda.gov/Drugs/DrugSafety/ucm303192.htm#data

Switch to consumer interaction data

Drug and food interactions

Moderate

ozanimod food

Applies to: ozanimod

GENERALLY AVOID: Foods that contain large amounts of tyramine may precipitate a hypertensive crisis in patients treated with ozanimod. The proposed mechanism involves potentiation of the tyramine pressor effect due to inhibition of monoamine oxidase (MAO) by the major active metabolites of ozanimod, CC112273 and CC1084037. Monoamine oxidase in the gastrointestinal tract and liver, primarily type A (MAO-A), is the enzyme responsible for metabolizing exogenous amines such as tyramine and preventing them from being absorbed intact. Once absorbed, tyramine is metabolized to octopamine, a substance that is believed to displace norepinephrine from storage granules causing a rise in blood pressure. In vitro, CC112273 and CC1084037 inhibited MAO-B (IC50 values of 5.72 nM and 58 nM, respectively) with more than 1000-fold selectivity over MAO-A (IC50 values >10000 nM). Because of this selectivity, as well as the fact that free plasma concentrations of CC112273 and CC1084037 are less than 8% of the in vitro IC50 values for MAO-B inhibition, ozanimod is expected to have a much lower propensity to cause hypertensive crises than nonselective MAO inhibitors. However, rare cases of hypertensive crisis have occurred during clinical trials for the treatment of multiple sclerosis (MS) and ulcerative colitis (UC) and in postmarketing use. In controlled clinical trials, hypertension and blood pressure increases were reported more frequently in patients treated with ozanimod (up to 4.6% in MS patients receiving ozanimod 0.92 mg/day) than in patients treated with interferon beta-1a (MS) or placebo (UC).

Administration of ozanimod with either a high-fat, high-calorie meal (1000 calories; 50% fat) or a low-fat, low-calorie meal (300 calories; 10% fat) had no effects on ozanimod peak plasma concentration (Cmax) and systemic exposure (AUC) compared to administration under fasted conditions.

MANAGEMENT: Dietary restriction is not ordinarily required during ozanimod treatment with respect to most foods and beverages that contain tyramine, which usually include aged, fermented, cured, smoked, or pickled foods (e.g., air-dried and fermented meats or fish, aged cheeses, most soybean products, yeast extracts, red wine, beer, sauerkraut). However, certain foods like some of the aged cheeses (e.g., Boursault, Liederkrantz, Mycella, Stilton) and pickled herring may contain very high amounts of tyramine and could potentially cause a hypertensive reaction in patients taking ozanimod, even at recommended dosages, due to increased sensitivity to tyramine. Patients should be advised to avoid the intake of very high levels of tyramine (e.g., greater than 150 mg) and to promptly seek medical attention if they experience potential signs and symptoms of a hypertensive crisis such as severe headache, visual disturbances, confusion, stupor, seizures, chest pain, unexplained nausea or vomiting, and stroke-like symptoms. Blood pressure should be regularly monitored and managed accordingly. Because of the long elimination half-lives of the major active metabolites, these precautions may need to be observed for up to 3 months following the last ozanimod dose. Ozanimod can be administered with or without food.

References

  1. (2022) "Product Information. Zeposia (ozanimod)." Celgene Pty Ltd
  2. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb
  3. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb Canada Inc
  4. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb Pharmaceuticals Ltd
  5. Choi DK, Rubin DT, Puangampai A, Cleveland N (2022) "Hypertensive emergency after initiating ozanimod: a case report." Inflamm Bowel Dis, 28, e114-5
View all 5 references

Switch to consumer interaction data

Therapeutic duplication warnings

Therapeutic duplication is the use of more than one medicine from the same drug category or therapeutic class to treat the same condition. This can be intentional in cases where drugs with similar actions are used together for demonstrated therapeutic benefit. It can also be unintentional in cases where a patient has been treated by more than one doctor, or had prescriptions filled at more than one pharmacy, and can have potentially adverse consequences.

Duplication

Immunomodulators for multiple sclerosis

Therapeutic duplication

The recommended maximum number of medicines in the 'immunomodulators for multiple sclerosis' category to be taken concurrently is usually one. Your list includes two medicines belonging to the 'immunomodulators for multiple sclerosis' category:

  • ozanimod
  • Tascenso ODT (fingolimod)

Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.