Skip to main content

Drug Interactions between Oxycet and sildenafil

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

oxyCODONE sildenafil

Applies to: Oxycet (acetaminophen / oxycodone) and sildenafil

MONITOR: Acute intake of opiates during sildenafil use may result in prolonged erections. The proposed mechanism is an opiate-induced acute increase in cyclic guanosine monophosphate concentrations in peripheral nerve endings, which can be additive with that produced by sildenafil. The interaction has been reported specifically with dihydrocodeine but could conceivably occur with other opiates. In two patients who had been using sildenafil for erectile dysfunction, prolonged erections lasting 2 to 5 hours occurred on several occasions of sildenafil use within the first week after initiation of treatment with dihydrocodeine. One patient discontinued the dihydrocodeine, whereupon his erections from sildenafil returned to normal. The other patient continued taking dihydrocodeine for an additional 2 weeks but had no further problems.

MANAGEMENT: Patients using sildenafil should be advised of the potential for prolonged erections during acute intake of opiates, and to contact their physician if problems occur. The interaction may not occur during chronic use of opiates.

References

  1. Goldmeier D, Lamba H "Prolonged erections produced by dihydrocodeine and sildenafil." BMJ 324 (2002): 1555

Switch to consumer interaction data

Drug and food interactions

Major

oxyCODONE food

Applies to: Oxycet (acetaminophen / oxycodone)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including oxycodone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of oxycodone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of oxycodone by certain compounds present in grapefruit, resulting in decreased formation of metabolites noroxycodone and noroxymorphone and increased formation of oxymorphone due to a presumed shifting of oxycodone metabolism towards the CYP450 2D6-mediated route. In 12 healthy, nonsmoking volunteers, administration of a single 10 mg oral dose of oxycodone hydrochloride on day 4 of a grapefruit juice treatment phase (200 mL three times a day for 5 days) increased mean oxycodone peak plasma concentration (Cmax), systemic exposure (AUC) and half-life by 48%, 67% and 17% (from 3.5 to 4.1 hours), respectively, compared to administration during an equivalent water treatment phase. Grapefruit juice also decreased the metabolite-to-parent AUC ratio of noroxycodone by 44% and that of noroxymorphone by 45%. In addition, oxymorphone Cmax and AUC increased by 32% and 56%, but the metabolite-to-parent AUC ratio remained unchanged. Pharmacodynamic changes were modest and only self-reported performance was significantly impaired after grapefruit juice. Analgesic effects were not affected.

MANAGEMENT: Patients should not consume alcoholic beverages or use drug products that contain alcohol during treatment with oxycodone. Any history of alcohol or illicit drug use should be considered when prescribing oxycodone, and therapy initiated at a lower dosage if necessary. Patients should be closely monitored for signs and symptoms of sedation, respiratory depression, and hypotension. Due to a high degree of interpatient variability with respect to grapefruit juice interactions, patients treated with oxycodone may also want to avoid or limit the consumption of grapefruit and grapefruit juice.

References

  1. Nieminen TH, Hagelberg NM, Saari TI, et al. "Grapefruit juice enhances the exposure to oral oxycodone." Basic Clin Pharmacol Toxicol 107 (2010): 782-8

Switch to consumer interaction data

Major

acetaminophen food

Applies to: Oxycet (acetaminophen / oxycodone)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Moderate

sildenafil food

Applies to: sildenafil

GENERALLY AVOID: Coadministration with grapefruit juice may slightly increase the oral bioavailability and delay the onset of action of sildenafil. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In a randomized, crossover study with 24 healthy male volunteers, ingestion of 250 mL of grapefruit juice one hour before and concurrently with a 50 mg dose of sildenafil increased the mean area under the plasma concentration-time curve (AUC) of sildenafil and its pharmacologically active N-desmethyl metabolite by 23% and 24%, respectively, compared to water. Peak plasma concentrations (Cmax) were unaltered, but the time to reach sildenafil Cmax was prolonged by 0.25 hour. The observed increase in sildenafil bioavailability is unlikely to be of clinical significance in most individuals. However, pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability and may be significant in the occasional susceptible patient. Indeed, one subject in the study had a 2.6-fold increase in sildenafil concentrations.

MANAGEMENT: It may be advisable to avoid administration of sildenafil with grapefruit juice to prevent potential toxicity and delay in onset of action.

References

  1. Jetter A, Kinzig-Schippers M, Walchner-Bonjean M, et al. "Effects of grapefruit juice on the pharmacokinetics of sildenafil." Clin Pharmacol Ther 71 (2002): 21-29

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.