Skip to main content

Drug Interactions between nateglinide and Tamone

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

tamoxifen nateglinide

Applies to: Tamone (tamoxifen) and nateglinide

MONITOR: Coadministration with inhibitors of CYP450 2C9 may increase the plasma concentrations of nateglinide, which is primarily metabolized by the isoenzyme. In 18 healthy volunteers, administration of a single 120 mg oral dose of nateglinide in combination with the CYP450 2C9 inhibitor sulfinpyrazone (200 mg orally twice daily for 7 days) increased mean sulfinpyrazone systemic exposure (AUC) by 28% compared to administration alone. Sulfinpyrazone did not affect the mean peak plasma concentration (Cmax), time to reach peak plasma concentration (Tmax), or the elimination half-life of nateglinide.

MANAGEMENT: Because the antidiabetic effect of nateglinide is dose- and concentration-dependent, close monitoring for the development of hypoglycemia is recommended during coadministration with CYP450 2C9 inhibitors. Patients should regularly monitor their blood sugar and learn how to recognize and treat hypoglycemia, which may include symptoms such as headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, and palpitation. The dosage of nateglinide may require adjustment if an interaction is suspected. Likewise, patients should be observed for potential loss of glycemic control following discontinuation of the CYP450 2C9 inhibitor, and the nateglinide dosage adjusted as necessary.

References

  1. (2001) "Product Information. Starlix (nateglinide)." Novartis Pharmaceuticals
  2. Sabia H, Sunkara G, Ligueros-Saylan M, et al. (2004) "Effect of a selective CYP2C9 inhibitor on the pharmacokinetics of nateglinide in healthy subjects." Eur J Clin Pharmacol

Switch to consumer interaction data

Drug and food interactions

Moderate

tamoxifen food

Applies to: Tamone (tamoxifen)

GENERALLY AVOID: Due to their estrogenic effect, isoflavones present in soy such as genistein and daidzein may stimulate breast tumor growth and antagonize the antiproliferative action of tamoxifen. Supportive data are derived primarily from in vitro and animal studies. In vitro, low concentrations of these phytoestrogens have been found to promote DNA synthesis and reverse the inhibitory effect of tamoxifen on estrogen-dependent breast cancer cell proliferation. In contrast, high concentrations of genistein greater than 10 microM/L have been found to enhance tamoxifen effects by inhibiting breast cancer cell growth. It is not known if these high concentrations are normally achieved in humans. Plasma concentrations below 4 microM/L have been observed in healthy volunteers given a soy diet for one month or large single doses of genistein. These concentrations are comparable to the low plasma concentrations associated with tumor stimulation reported in animals. In a study of 155 female breast cancer survivors with substantially bothersome hot flashes, a product containing 50 mg of soy isoflavones (40% to 45% genistein; 40% to 45% daidzein; 10% to 20% glycitein) taken three times a day was found to be no more effective than placebo in reducing hot flashes. No toxicity or recurrence of breast cancer was reported during the 9-week study period.

Green tea does not appear to have significant effects on the pharmacokinetics of tamoxifen or its primary active metabolite, endoxifen. In a study consisting of 14 patients who have been receiving tamoxifen treatment at a stable dose of 20 mg (n=13) or 40 mg (n=1) once daily for at least 3 months, coadministration with green tea supplements twice daily for 14 days resulted in no significant differences in the pharmacokinetics of either tamoxifen or endoxifen with respect to peak plasma concentration (Cmax), systemic exposure (AUC), and trough plasma concentration (Cmin) compared to administration of tamoxifen alone. The combination was well tolerated, with all reported adverse events categorized as mild (grade 1) and none categorized as serious or severe (grade 3 or higher) during the entire study. Although some adverse events such as headache, polyuria, gastrointestinal side effects (e.g., constipation, dyspepsia), and minor liver biochemical disturbances were reported more often during concomitant treatment with green tea, most can be attributed to the high dose of green tea used or to the caffeine in green tea. The green tea supplements used were 1000 mg in strength and contained 150 mg of epigallocatechin-3-gallate (EGCG), the most abundant and biologically active catechin in green tea. According to the investigators, the total daily dose of EGCG taken by study participants is equivalent to the amount contained in approximately 5 to 6 cups of regular green tea. However, it is not known to what extent the data from this study may be applicable to other preparations of green tea such as infusions, since the bioavailability of EGCG and other catechins may vary between preparations.

MANAGEMENT: Until more information is available, patients treated with tamoxifen may consider avoiding or limiting the consumption of soy-containing products. Consumption of green tea and green tea extracts during tamoxifen therapy appears to be safe.

References

  1. Therapeutic Research Faculty (2008) Natural Medicines Comprehensive Database. http://www.naturaldatabase.com
  2. Braal CL, Hussaarts KGAM, Seuren L, et al. (2020) "Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen." Breast Cancer Res Treat, 184, p. 107-13

Switch to consumer interaction data

Moderate

nateglinide food

Applies to: nateglinide

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO (1981) "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand, 656, p. 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. (1983) "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol, 24, p. 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. (1983) "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia, 24, p. 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A (1987) "Interaction of ethanol and glipizide in humans." Diabetes Care, 10, p. 683-6
  5. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  6. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM (1981) "The pharmacology of sulfonylureas." Am J Med, 70, p. 361-72
  9. (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.