Skip to main content

Drug Interactions between MLK F2 and thalidomide

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

lidocaine BUPivacaine

Applies to: MLK F2 (bupivacaine / lidocaine / triamcinolone) and MLK F2 (bupivacaine / lidocaine / triamcinolone)

GENERALLY AVOID: Additive toxicities may occur when bupivacaine is coadministered with other local anesthetics. The potential for increased risk of systemic toxicities such as methemoglobinemia and central nervous system and cardiovascular adverse reactions should be recognized.

MANAGEMENT: Additional use of local anesthetics should generally be avoided within 96 hours following administration of bupivacaine. If coadministration cannot be avoided, overall local anesthetic exposure through 72 hours must be considered in addition to monitoring for the development of methemoglobinemia as well as central nervous system and cardiovascular adverse reactions. Signs and symptoms of methemoglobinemia may be delayed some hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia such as slate-grey cyanosis in buccal mucous membranes, lips, and nail beds; nausea; headache; dizziness; lightheadedness; lethargy; fatigue; dyspnea; tachypnea; tachycardia; palpitation; anxiety; and confusion. In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, shock, coma, and death. Early warning signs of central nervous system toxicity may include restlessness, anxiety, incoherent speech, dizziness, lightheadedness, numbness and tingling of the mouth and lips, metallic taste, tinnitus, blurred vision, tremors, twitching, depression, and drowsiness. Cardiovascular toxicity may include atrioventricular block, ventricular arrhythmias, cardiac arrest, and decreased cardiac output and arterial blood pressure due to depressed cardiac conductivity, excitability, and myocardial contractility. Patients should have cardiovascular and respiratory vital signs and state of consciousness constantly monitored while under treatment.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2021) "Product Information. Zynrelef (bupivacaine-meloxicam)." Heron Therapeutics

Switch to consumer interaction data

Major

triamcinolone thalidomide

Applies to: MLK F2 (bupivacaine / lidocaine / triamcinolone) and thalidomide

MONITOR CLOSELY: Coadministration of thalidomide with glucocorticoids and/or antineoplastic agents in the treatment of malignancy may potentiate the risk of thromboembolism. The exact mechanism is unknown but likely multifactorial. Thalidomide alone has been associated with the development of deep-vein thrombosis (DVT), and malignancy itself is also a common cause. In a study of 100 patients receiving induction chemotherapy (combinations of dexamethasone, vincristine, doxorubicin, cyclophosphamide, etoposide, and cisplatin) for multiple myeloma, the addition of thalidomide was associated with an increased incidence of DVT compared to chemotherapy without thalidomide (28% vs. 4%). Administration of thalidomide was safely resumed in 75% of patients after initiation of appropriate anticoagulation therapy. In another study, 9 of 21 (43%) patients with metastatic renal cell carcinoma (RCC) receiving gemcitabine, 5-FU, and thalidomide developed venous thromboembolism, including one case of fatal cardiac arrest. This rate is substantially higher than the 3% rate observed in a group of 125 patients previously treated at the same institution with similar regimens of gemcitabine and 5-FU but without thalidomide. It is also higher than the 9% rate (12 of 140 patients) the investigators found in a review of published data from five RCC trials that used thalidomide therapy without concomitant cytotoxic therapy. Another study found a significant association of DVT with exposure to doxorubicin in patients receiving thalidomide. Specifically, 31 of 192 (16%) multiple myeloma patients treated with DT-PACE (a regimen of dexamethasone, thalidomide, cisplatin, doxorubicin, cyclophosphamide, and etoposide) developed DVT, while only 1 of 40 (2.5%) did so on DCEP-T (similar to DT-PACE but without doxorubicin). The time to DVT was also significantly decreased with doxorubicin exposure. In a pooled analysis of 39 prospectively monitored clinical trials involving 1784 thalidomide-treated patients, the incidence of thromboembolism was 5% when thalidomide was used as a single agent, 13% when combined with corticosteroids (8% to 26% has been reported in individual studies with dexamethasone), and 17% when combined with chemotherapy. Among thalidomide-treated patients with multiple myeloma, thromboembolism rates ranged from a low of 1/30 among those treated with concomitant cyclophosphamide, etoposide, and cisplatin to a high of about 1/3 in those treated with doxorubicin-containing regimens.

MANAGEMENT: Close monitoring for DVT or pulmonary embolism is recommended in patients who require thalidomide therapy in combination with glucocorticoids and/or cytotoxic agents. Patients should be advised to seek medical attention if they develop potential signs and symptoms of thromboembolism such as chest pain, shortness of breath, and pain or swelling in the arms or legs. Prophylaxis with anticoagulants such as low-molecular weight heparins or warfarin may be appropriate, but the decision to take thromboprophylactic measures should be made after careful assessment of underlying risk factors. If a thromboembolic event occurs during therapy with thalidomide, treatment must be discontinued and standard anticoagulation therapy started. Once anticoagulation is stabilized and complications of the thromboembolic event under control, thalidomide may be restarted at the original dose if benefit is deemed to outweigh the risks. Anticoagulation therapy should be continued during the remaining course of thalidomide treatment.

References

  1. (2001) "Product Information. Thalomid (thalidomide)." Celgene Corporation
  2. Zangari M, Anaissie E, Barlogie B, et al. (2001) "Increased risk of deep-vein thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy." Blood, 98, p. 1614-5
  3. Figg WD, Arlen P, Gulley J, et al. (2001) "A randomized phase II trial of docetaxel (taxotere) plus thalidomide in androgen-independent prostate cancer." Semin Oncol, 28(4 Suppl 15), p. 62-6
  4. Escudier B, Lassau N, Leborgne S, Angevin E, Laplanche A (2002) "Thalidomide and venous thrombosis." Ann Intern Med, 136, p. 711
  5. Urbauer E, Kaufmann H, Nosslinger T, Raderer M, Drach J (2002) "Thromboembolic events during treatment with thalidomide." Blood, 99, p. 4247-8
  6. Zangari M, Siegel E, Barlogie B, et al. (2002) "Thrombogenic activity of doxorubicin in myeloma patients receiving thalidomide: implications for therapy." Blood, 100, p. 1168-71
  7. Cavo M, Zamagni E, Cellini C, et al. (2002) "Deep-vein thrombosis in patients with multiple myeloma receiving first-line thalidomide-dexamethasone therapy." Blood, 100, p. 2272-3
  8. Desai AA, Vogelzang NJ, Rini BI, Ansari R, Krauss S, Stadler WM (2002) "A high rate of venous thromboembolism in a multi-institutional Phase II trial of weekly intravenous gemcitabine with continuous infusion fluorouracil and daily thalidomide in patients with metastatic renal cell carcinoma." Cancer, 95, p. 1629-36
  9. Rajkumar SV, Hayman S, Gertz MA, et al. (2002) "Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma." J Clin Oncol, 20, p. 4319-23
  10. Bennett CL, Schumock GT, Desai AA, et al. (2002) "Thalidomide-associated deep vein thrombosis and pulmonary embolism." Am J Med, 113, p. 603-6
  11. Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R (2003) "Thalidomide alone or with dexamethasone for previously untreated multiple myeloma." J Clin Oncol, 21, p. 16-9
  12. Fine HA, Wen PY, Maher EA, et al. (2003) "Phase II Trial of Thalidomide and Carmustine for Patients With Recurrent High-Grade Gliomas." J Clin Oncol, 21, p. 2299-304
  13. Lee CK, Barlogie B, Munshi N, et al. (2003) "DTPACE: an effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma." J Clin Oncol, 21, p. 2732-9
  14. Zangari M, Barlogie B, Anaissie E, et al. (2004) "Deep vein thrombosis in patients with mutiple myeloma treated with thalidomide and chemotherapy: effects of prophylactic and therapeutic anticoagulation." Br J Haematol, 126, p. 715-21
  15. Osman K, Comenzo R, Rajkumar SV (2001) "Deep venous thrombosis and thalidomide therapy for multiple myeloma." N Engl J Med, 344, p. 1951-2
  16. Bennett CL, Nebeker JR, Samore MH, et al. (2005) "The Research on Adverse Drug Events and Reports (RADAR) project." JAMA, 293, p. 2131-40
View all 16 references

Switch to consumer interaction data

Moderate

lidocaine thalidomide

Applies to: MLK F2 (bupivacaine / lidocaine / triamcinolone) and thalidomide

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Drug and food interactions

Moderate

lidocaine food

Applies to: MLK F2 (bupivacaine / lidocaine / triamcinolone)

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References

  1. Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
  2. (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
  3. (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
  4. (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
  5. (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
  6. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
  7. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
View all 7 references

Switch to consumer interaction data

Moderate

thalidomide food

Applies to: thalidomide

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.