Skip to main content

Drug Interactions between Methotrexate LPF Sodium and Proben-C

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

probenecid methotrexate

Applies to: Proben-C (colchicine / probenecid) and Methotrexate LPF Sodium (methotrexate)

MONITOR CLOSELY: Probenecid inhibits the renal elimination of methotrexate. The pharmacologic effect and toxicity of methotrexate may be increased, especially in patients receiving high-dose methotrexate.

MANAGEMENT: If this combination must be used, a reduction in methotrexate dosage may be needed and the patient should be closely monitored for signs and symptoms of bone marrow suppression, hepatotoxicity, and nephrotoxicity. Patients should be advised to promptly report symptoms including fever, chills, sore throat, bruising, bleeding, stomatitis, malaise, shortness of breath, lower extremity edema, jaundice, or change in stool or urine color to their physician.

References

  1. Basin KS, Escalante A, Beardmore TD "Severe pancytopenia in a patient taking low dose methotrexate and probenecid." J Rheumatol 18 (1991): 609-10
  2. Aherne GW, Piall E, Marks V, et al. "Prolongation and enhancement of serum methotrexate concentrations by probenecid." Br Med J 1 (1978): 1097-9
  3. Howell SB, Olshen RA, Rice JA "Effect of probenecid on cerebrospinal fluid methotrexate kinetics." Clin Pharmacol Ther 26 (1979): 641-6
  4. Lilly MB, Omura GA "Clinical pharmacology of oral intermediate-dose methotrexate with or without probenecid." Cancer Chemother Pharmacol 15 (1985): 220-2
  5. Bourke RS, Chheda G, Bremer A, Watanabe O, Tower DB "Inhibition of renal tubular transport of methotrexate by probenecid." Cancer Res 35 (1975): 110-6
  6. Kates RE, Tozer TN, Sorby DL "Increased methotrexate toxicity due to concurrent probenecid administration." Biochem Pharmacol 25 (1976): 1485-8
View all 6 references

Switch to consumer interaction data

Drug and food interactions

Major

colchicine food

Applies to: Proben-C (colchicine / probenecid)

GENERALLY AVOID: Coadministration with grapefruit juice may increase the serum concentrations of colchicine. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism and P-glycoprotein efflux in the gut wall by certain compounds present in grapefruits. A published case report describes an eight-year-old patient with familial Mediterranean fever who developed acute clinical colchicine intoxication after ingesting approximately one liter of grapefruit juice per day for two months prior to hospital admission while being treated with colchicine 2 mg/day. Her condition progressed to circulatory shock and multiorgan failure, but she recovered with supportive therapy after 24 days in the hospital. In a study of 21 healthy volunteers, administration of 240 mL grapefruit juice twice a day for 4 days was found to have no significant effect on the pharmacokinetics of a single 0.6 mg dose of colchicine. However, significant interactions have been reported with other CYP450 3A4 inhibitors such as clarithromycin, diltiazem, erythromycin, ketoconazole, ritonavir, and verapamil.

MANAGEMENT: Patients treated with colchicine should be advised to avoid the consumption of grapefruit and grapefruit juice, and to contact their physician if they experience symptoms of colchicine toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness.

References

  1. Pettinger WA "Clonidine, a new antihypertensive drug." N Engl J Med 293 (1975): 1179-80
  2. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol 19 (1992): 494-6
  3. Schiff D, Drislane FW "Rapid-onset colchicine myoneuropathy." Arthritis Rheum 35 (1992): 1535-6
  4. Putterman C, Ben-Chetrit E, Caraco Y, Levy M "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum 21 (1991): 143-55
  5. Boomershine KH "Colchicine-induced rhabdomyolysis." Ann Pharmacother 36 (2002): 824-6
  6. "Severe colchicine-macrolide interactions." Prescrire Int 12 (2003): 18-9
  7. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol 53 (1996): 111-6
  8. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol 55 (2001): 181-2
  9. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother 38 (2004): 2074-7
  10. Wilbur K, Makowsky M "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy 24 (2004): 1784-92
  11. Hung IF, Wu AK, Cheng VC, et al. "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis 41 (2005): 291-300
  12. Cheng VC, Ho PL, Yuen KY "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J 98 (2005): 811-3
  13. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol 19 (2006): 515-7
  14. van der Velden W, Huussen J, Ter Laak H, de Sevaux R "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med 66 (2008): 204-6
  15. Goldbart A, Press J, Sofer S, Kapelushnik J "Near fatal acute colchicine intoxication in a child. A case report." Eur J Pediatr 159 (2000): 895-7
  16. "Colchicine: serious interactions." Prescrire Int 17 (2008): 151-3
  17. "Product Information. Colcrys (colchicine)." AR Scientific Inc (2009):
  18. Dahan A, Amidon GL "Grapefruit juice and its constitueants augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein." Pharm Res 26 (2009): 883-92
  19. McKinnell J, Tayek JA "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol 15 (2009): 303-5
View all 19 references

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: Methotrexate LPF Sodium (methotrexate)

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum 48 (2003): 571-572

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: Methotrexate LPF Sodium (methotrexate)

GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.

MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. "Product Information. Methotrexate (methotrexate)." Lederle Laboratories PROD (2002):
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  3. "Product Information. Methotrexate (methotrexate)." Hospira Inc (2023):

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: Methotrexate LPF Sodium (methotrexate)

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum 48 (2003): 571-572

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.