Skip to main content

Drug Interactions between Lupaneta Pack and Sirturo

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

leuprolide bedaquiline

Applies to: Lupaneta Pack (leuprolide / norethindrone) and Sirturo (bedaquiline)

MONITOR CLOSELY: Bedaquiline can cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In one clinical study, the mean increase in Fridericia-corrected QT interval (QTcF) was 9.9 msec in subjects receiving bedaquiline and 3.5 msec in subjects receiving placebo after the first week of treatment. The largest mean increase in QTc during the 24 weeks of bedaquiline treatment was 15.7 msec, compared to 6.2 msec for placebo at week 18. QT increases from baseline in the bedaquiline group persisted even after treatment was stopped. In another study where patients with no treatment options received other QT-prolonging drugs used to treat tuberculosis, concurrent use of bedaquiline resulted in additive QT prolongation proportional to the number of QT-prolonging drugs in the treatment regimen. Patients receiving bedaquiline alone with no other QT-prolonging drugs developed a mean QTcF increase over baseline of 23.7 msec. There was no QT segment duration in excess of 480 msec in this group, whereas patients receiving at least two other QT-prolonging drugs developed a mean QTcF prolongation of 30.7 msec over baseline, resulting in QTcF segment durations in excess of 500 msec in one patient. Mean increases in QTc were also larger in the 17 subjects who were using clofazimine with bedaquiline than in those who were not using clofazimine with bedaquiline (31.9 msec versus 12.3 msec at week 24). There were no documented cases of torsade de pointes in the safety database. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Caution is recommended if bedaquiline is used in combination with other drugs that can prolong the QT interval. ECG and serum electrolytes, including potassium, magnesium and calcium, should be monitored before starting bedaquiline therapy and periodically during treatment in accordance with the product labeling. Hypokalemia, hypomagnesemia, and hypocalcemia must be corrected prior to bedaquiline administration. All QT-prolonging drugs including bedaquiline should be interrupted in patients who develop clinically significant ventricular arrhythmia or a QTcF interval greater than 500 msec confirmed by repeat ECG. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. "Product Information. Sirturo (bedaquiline)." Janssen Pharmaceuticals (2013):

Switch to consumer interaction data

Drug and food interactions

Moderate

norethindrone food

Applies to: Lupaneta Pack (leuprolide / norethindrone)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

bedaquiline food

Applies to: Sirturo (bedaquiline)

ADJUST DOSING INTERVAL: Food enhances the oral bioavailability of bedaquiline. When administered with a standard meal containing approximately 22 grams of fat (558 total Kcal), the relative bioavailability of bedaquiline increased by approximately 2-fold compared to administration under fasted conditions.

GENERALLY AVOID: Coadministration with alcohol may increase the risk of hepatotoxicity associated with the use of bedaquiline. In clinical trials, hepatic adverse drug reactions developed in more bedaquiline-treated patients than in those who received other drugs used to treat tuberculosis. In patients receiving bedaquiline or placebo in combination with other drugs used to treat multidrug-resistant tuberculosis, reversible aminotransferase elevations of at least 3 times the upper limit of normal developed more frequently in the bedaquiline treatment group [10.8%] than in the placebo group [5.7%].

MANAGEMENT: To ensure maximal oral absorption, bedaquiline should be taken with food. Patients should avoid alcohol use during treatment.

References

  1. "Product Information. Sirturo (bedaquiline)." Janssen Pharmaceuticals (2013):

Switch to consumer interaction data

Minor

norethindrone food

Applies to: Lupaneta Pack (leuprolide / norethindrone)

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther 38 (1985): 371-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.