Skip to main content

Drug Interactions between Loratadine-D 24 Hour and rasagiline

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

pseudoephedrine rasagiline

Applies to: Loratadine-D 24 Hour (loratadine / pseudoephedrine) and rasagiline

MONITOR: Coadministration of nonselective monoamine oxidase (MAO) inhibitors and sympathomimetic amines has been associated with severe hypertensive reactions. The mechanism involves a synergistic sympathomimetic effect due to enhanced norepinephrine storage in adrenergic neurons (MAOI activity) and increased liberation or decreased reuptake of catecholamines (sympathomimetic activity). Concomitant use of sympathomimetic medications was not allowed in clinical studies of rasagiline. Because rasagiline is a selective MAO-B inhibitor, hypertensive reactions would not ordinarily be expected when used with sympathomimetic amines. However, one case of hypertensive crisis has been reported in a patient taking ephedrine with the recommended dosage of a different selective MAO-B inhibitor. In the postmarketing period, elevated blood pressure was reported in a patient using ophthalmic tetrahydrozoline drops while taking the recommended dosage of rasagiline.

MANAGEMENT: Caution is advised if rasagiline is used in combination with sympathomimetic amines. Patients with preexisting hypertension may require more frequent monitoring of their blood pressure.

References

  1. Smookler S, Barmudez AJ (1982) "Hypertensive crisis resulting from an MAO inhibitor and an over-the counter appetite suppressant." Ann Emerg Med, 11, p. 482-4
  2. Krisko I, Lewis E, Johnson JE (1969) "Severe hyperpyrexia due to tranylcypromine-amphetamine toxicity." Ann Intern Med, 70, p. 559-64
  3. Elis J, Laurence DR, Mattie H, Prichard BN (1967) "Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure." Br Med J, 2, p. 75-8
  4. Davies B, Bannister R, Sever P (1978) "Pressor amines and monoamine-oxidase inhibitors for treatment of postural hypotension in autonomic failure: limitations and hazards." Lancet, 1, p. 172-5
  5. Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
  6. Horler AR, Wynne NA (1965) "Hypertensive crisis due to pargyline and metaraminol." Br Med J, 5459, p. 460-1
  7. Sjoqvist F (1965) "Psychotropic drugs (2) interaction between monoamine oxidase (MAO) inhibitors and other substances." Proc R Soc Med, 58, p. 967-78
  8. Harrison WM, McGrath PJ, Stewart JW, Quitkin F (1989) "MAOIs and hypertensive crises: the role of OTC drugs." J Clin Psychiatry, 50, p. 64-5
  9. Cuthbert MF, Greenberg MP, Morley SW (1969) "Cough and cold remedies: a potential danger to patients on monoamine oxidase inhibitors." Br Med J, 1, p. 404-6
  10. Humberstone PM (1969) "Hypertension from cold remedies." Br Med J, 1, p. 846
  11. Wright SP (1978) "Hazards with monoamine-oxidase inhibitors: a persistent problem." Lancet, 1, p. 284-5
  12. Boakes AJ, Laurence DR, Teoh PC, Barar FS, Benedikter LT, Pritchard BN (1973) "Interactions between sympathomimetic amines and antidepressant agents in man." Br Med J, 1, p. 311-5
  13. Dally PJ (1962) "Fatal reaction associated with tranylcypromine and methylamphetamine." Lancet, 1, p. 1235-6
  14. Schildkraut JJ, Klerman GL, Friend DG, Greenblatt M (1963) "Biochemical and pressor effects of oral d,l-dihydroxyphenylalanine in patients pretreated with antidepressant drugs." Ann N Y Acad Sci, 107, p. 1005-15
  15. Smookler S, Bermudez AJ (1982) "Hypertensive crisis resulting from an MAO inhibitor and an over-the-counter appetite suppressant." Ann Intern Med, 11, p. 482-4
  16. Mason AM, Buckle RM (1969) ""Cold" cures and monoamine-oxidase inhibitors." Br Med J, 1, p. 845-6
  17. Boakes AJ, Laurence DR, Teoh PC, Barar FS, Benedikter LT, Prichard BN (1973) "Interactions between sympathomimetic amines and antidepressant agents in man." Br Med J, 1, p. 311-5
  18. Goulet JP, Perusse R, Turcotte JY (1992) "Contraindications to vasoconstrictors in dentistry: Part III. Pharmacologic interactions." Oral Surg Oral Med Oral Pathol, 74, p. 692-7
  19. Ban TA (1975) "Drug interactions with psychoactive drugs." Dis Nerv Syst, 36, p. 164-6
  20. Lefebvre H, Noblet C, Morre N, Wolf LM (1995) "Pseudo-phaeochromocytoma after multiple drug interactions involving the selective monoamine oxidase inhibitor selegiline." Clin Endocrinol (Oxf), 42, p. 95-8
  21. Darcy PF, Griffin JP (1995) "Interactions with drugs used in the treatment of depressive illness." Adverse Drug React Toxicol Rev, 14, p. 211-31
  22. Markowitz JS, Patrick KS (2001) "Pharmacokinetic and pharmacodynamic drug interactions in the treatment of attention-deficit hyperactivity disorder." Clin Pharmacokinet, 40, p. 753-72
  23. (2006) "Product Information. Azilect (rasagiline)." Teva Pharmaceuticals USA
  24. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  25. (2007) "Product Information. Vyvanse (lisdexamfetamine)." Shire US Inc
View all 25 references

Switch to consumer interaction data

Drug and food interactions

Moderate

rasagiline food

Applies to: rasagiline

GENERALLY AVOID: Foods that contain large amounts of tyramine may precipitate a hypertensive crisis in patients treated with monoamine oxidase (MAO) inhibitors. The mechanism involves inhibition of MAO-A, the enzyme responsible for metabolizing exogenous amines such as tyramine in the gut and preventing them from being absorbed intact. Once absorbed, tyramine is metabolized to octopamine, a substance that is believed to displace norepinephrine from storage granules. Although rasagiline is a selective inhibitor of MAO-B at the recommended dosages of 0.5 or 1 mg/day, selectivity is not absolute and may diminish with increasing dosage. There were no cases of hypertensive crisis in the clinical development program associated with rasagiline treatment at 1 mg/day, in which most patients did not follow dietary tyramine restriction. However, rare cases of hypertensive crisis have been reported during the postmarketing period in patients who ingested unknown amounts of tyramine-rich foods while taking recommended dosages of rasagiline or selegiline, another MAO-B inhibitor.

Rasagiline peak plasma concentration (Cmax) and systemic exposure (AUC ) are decreased by approximately 60% and 20%, respectively, during coadministration with a high-fat meal. The time to peak concentration (Tmax) is not affected by food.

MANAGEMENT: Dietary restriction is not ordinarily required during rasagiline treatment with respect to most foods and beverages that may contain tyramine such as air-dried and fermented meats or fish, aged cheeses, most soybean products, yeast extracts, red wine, beer, and sauerkraut. However, certain foods like some of the aged cheeses (e.g., Boursault, Liederkrantz, Mycella, Stilton) may contain very high amounts of tyramine and could potentially cause a hypertensive reaction in patients taking rasagiline even at recommended dosages due to increased sensitivity to tyramine. Patients should be advised to avoid ingesting very high levels of tyramine (e.g., greater than 150 mg), and to promptly seek medical attention if they experience potential signs and symptoms of a hypertensive crisis such as severe headache, visual disturbances, confusion, stupor or coma, seizures, chest pain, unexplained nausea or vomiting, and stroke-like symptoms. Rasagiline should not be used at dosages exceeding 1 mg/day (0.5 mg/day for patients with mild hepatic impairment or concomitant use of ciprofloxacin or other CYP450 1A2 inhibitors), as it can increase the risk of hypertensive crisis and other adverse reactions associated with nonselective inhibition of MAO. Rasagiline can be administered with or without food.

References

  1. Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
  2. Nuessle WF, Norman FC, Miller HE (1965) "Pickled herring and tranylcypromine reaction." JAMA, 192, p. 142-3
  3. Sweet RA, Liebowitz MR, Holt CS, Heimberg RG (1991) "Potential interactions between monoamine oxidase inhibitors and prescribed dietary supplements." J Clin Psychopharmacol, 11, p. 331-2
  4. McGrath PJ, Stewart JW, Quitkin FM (1989) "A possible L-deprenyl induced hypertensive reaction." J Clin Psychopharmacol, 9, p. 310-1
  5. Lefebvre H, Noblet C, Morre N, Wolf LM (1995) "Pseudo-phaeochromocytoma after multiple drug interactions involving the selective monoamine oxidase inhibitor selegiline." Clin Endocrinol (Oxf), 42, p. 95-8
  6. Zetin M, Plon L, DeAntonio M (1987) "MAOI reaction with powdered protein dietary supplement." J Clin Psychiatry, 48, p. 499
  7. Domino EF, Selden EM (1984) "Red wine and reactions." J Clin Psychopharmacol, 4, p. 173-4
  8. Tailor SA, Shulman KI, Walker SE, Moss J, Gardner D (1994) "Hypertensive episode associated with phenelzine and tap beer--a reanalysis of the role of pressor amines in beer." J Clin Psychopharmacol, 14, p. 5-14
  9. Pohl R, Balon R, Berchou R (1988) "Reaction to chicken nuggets in a patient taking an MAOI." Am J Psychiatry, 145, p. 651
  10. Ito D, Amano T, Sato H, Fukuuchi Y (2001) "Paroxysmal hypertensive crises induced by selegiline in a patient with Parkinson's disease." J Neurol, 248, p. 533-4
  11. (2006) "Product Information. Azilect (rasagiline)." Teva Pharmaceuticals USA
View all 11 references

Switch to consumer interaction data

Moderate

pseudoephedrine food

Applies to: Loratadine-D 24 Hour (loratadine / pseudoephedrine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Minor

loratadine food

Applies to: Loratadine-D 24 Hour (loratadine / pseudoephedrine)

Theoretically, grapefruit juice may increase the plasma concentrations of loratadine as it does other drugs that are substrates of the CYP450 3A4 enzymatic pathway. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. The clinical significance of this potential interaction is unknown. Reported interactions with potent CYP450 3A4 inhibitors like clarithromycin, erythromycin and ketoconazole have produced substantial increases in the area under the plasma concentration-time curve (AUC) of loratadine and its active metabolite, descarboethoxyloratadine, without associated changes in the overall safety profile of the drug.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  3. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  4. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  5. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  6. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  7. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  8. Brannan MD, Reidenberg P, Radwanski E, et al. (1995) "Loratadine administered concomitantly with erythromycin: pharmacokinetic and electrocardiographic evaluations." Clin Pharmacol Ther, 58, p. 269-78
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Yumibe N, Huie K, Chen KJ, Snow M, Clement RP, Cayen MN (1996) "Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation o descarboethoxyloratadine by CYP3A4 and CYP2D6." Biochem Pharmacol, 51, p. 165-72
  15. Carr RA, Edmonds A, Shi H, Locke CS, Gustavson LE, Craft JC, Harris SI, Palmer R (1998) "Steady-state pharmacokinetics and electrocardiographic pharmacodynamics of clarithromycin and loratadine after individual or concomitant administration." Antimicrob Agents Chemother, 42, p. 1176-80
  16. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  17. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  18. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  19. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  20. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  21. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  22. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  23. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  24. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  25. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Kosoglou T, Salfi M, Lim JM, Batra VK, Cayen MN, Affrime MB (2000) "Evaluation of the pharmacokinetics and electrocardiographic pharmacodynamics of loratadine with concomitant administration of ketoconazole or cimetidine." Br J Clin Pharmacol, 50, p. 581-9
View all 30 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.