Skip to main content

Drug Interactions between Levaquin and tamoxifen

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

tamoxifen levoFLOXacin

Applies to: tamoxifen and Levaquin (levofloxacin)

MONITOR: Certain quinolones, including levofloxacin, norfloxacin, and ofloxacin, may cause dose-related prolongation of the QT interval in some patients. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. During postmarketing surveillance, rare cases of torsade de pointes and ventricular tachycardia have been reported in patients taking levofloxacin, norfloxacin, and ofloxacin. The levofloxacin cases primarily involved patients with underlying medical conditions or taking concomitant medications that may have been contributory. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Although the risk of a serious interaction is probably low, caution is recommended if levofloxacin, norfloxacin, or ofloxacin is used in combination with other drugs that can prolong the QT interval. Since the magnitude of QTc prolongation increases with increasing plasma concentrations of the quinolone, recommended dosages and intravenous infusion rates should not be exceeded. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. (2001) "Product Information. Floxin (ofloxacin)." Ortho McNeil Pharmaceutical
  2. Thomas M, Maconochie JG, Fletcher E (1996) "The dilemma of the prolonged QT interval in early drug studies." Br J Clin Pharmacol, 41, p. 77-81
  3. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  4. Samaha FF (1999) "QTC interval prolongation and polymorphic ventricular tachycardia in association with levofloxacin." Am J Med, 107, p. 528-9
  5. Iannini PB, Doddamani S, Byazrova E, Curciumaru I, Kramer H (2001) "Risk of torsades de pointes with non-cardiac drugs. Prolongation of QT interval is probably a class effect of fluoroquinolones." Br Med J, 322, p. 46-7
  6. Owens RC (2001) "Risk assessment for antimicrobial agent-induced QTc interval prolongation and torsades de pointes." Pharmacotherapy, 21, p. 301-19
  7. Ball P (2000) "Quinolone-induced QT interval prolongation: a not-so-unexpected class effect." J Antimicrob Chemother, 45, p. 557-9
  8. Kang J, Wang L, Chen XL, Triggle DJ, Rampe D (2001) "Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG." Mol Pharmacol, 59, p. 122-6
  9. Kahn JB (2001) "Latest industry information on the safety profile of levofloxacin in the US." Chemotherapy, 47 Suppl 3, p. 32-7
  10. Frothingham R (2001) "Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin." Pharmacotherapy, 21, p. 1468-72
  11. Oliphant CM, Green GM (2002) "Quinolones: a comprehensive review." Am Fam Physician, 65, p. 455-64
  12. Owens RC Jr, Ambrose PG (2002) "Torsades de pointes associated with fluoroquinolones." Pharmacotherapy, 22, 663-8; discussion 668-72
  13. Noel GJ, Natarajan J, Chien S, Hunt TL, Goodman DB, Abels R (2003) "Effects of three fluoroquinolones on QT interval in healthy adults after single doses." Clin Pharmacol Ther, 73, p. 292-303
  14. Iannini PB (2002) "Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval." Expert Opin Drug Saf, 1, p. 121-8
  15. Owens RC (2004) "QT Prolongation with Antimicrobial Agents : Understanding the Significance." Drugs, 64, p. 1091-124
  16. Nykamp DL, Blackmon CL, Schmidt PE, Roberson AG (2005) "QTc prolongation associated with combination therapy of levofloxacin, imipramine, and fluoxetine." Ann Pharmacother, 39, p. 543-6
  17. Katritsis D, Camm AJ (2003) "Quinolones: cardioprotective or cardiotoxic." Pacing Clin Electrophysiol, 26, p. 2317-20
  18. Stahlmann R (2002) "Clinical toxicological aspects of fluoroquinolones." Toxicol Lett, 127, p. 269-77
  19. Makaryus AN, Byrns K, Makaryus MN, Natarajan U, Singer C, Goldner B (2006) "Effect of ciprofloxacin and levofloxacin on the QT interval: is this a significant "clinical" event?" South Med J, 99, p. 52-6
  20. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  21. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  22. Falagas ME, Rafailidis PI, Rosmarakis ES (2007) "Arrhythmias associated with fluoroquinolone therapy." Int J Antimicrob Agents, 29, p. 374-9
  23. Cerner Multum, Inc. "Australian Product Information."
View all 23 references

Switch to consumer interaction data

Drug and food interactions

Moderate

tamoxifen food

Applies to: tamoxifen

GENERALLY AVOID: Due to their estrogenic effect, isoflavones present in soy such as genistein and daidzein may stimulate breast tumor growth and antagonize the antiproliferative action of tamoxifen. Supportive data are derived primarily from in vitro and animal studies. In vitro, low concentrations of these phytoestrogens have been found to promote DNA synthesis and reverse the inhibitory effect of tamoxifen on estrogen-dependent breast cancer cell proliferation. In contrast, high concentrations of genistein greater than 10 microM/L have been found to enhance tamoxifen effects by inhibiting breast cancer cell growth. It is not known if these high concentrations are normally achieved in humans. Plasma concentrations below 4 microM/L have been observed in healthy volunteers given a soy diet for one month or large single doses of genistein. These concentrations are comparable to the low plasma concentrations associated with tumor stimulation reported in animals. In a study of 155 female breast cancer survivors with substantially bothersome hot flashes, a product containing 50 mg of soy isoflavones (40% to 45% genistein; 40% to 45% daidzein; 10% to 20% glycitein) taken three times a day was found to be no more effective than placebo in reducing hot flashes. No toxicity or recurrence of breast cancer was reported during the 9-week study period.

Green tea does not appear to have significant effects on the pharmacokinetics of tamoxifen or its primary active metabolite, endoxifen. In a study consisting of 14 patients who have been receiving tamoxifen treatment at a stable dose of 20 mg (n=13) or 40 mg (n=1) once daily for at least 3 months, coadministration with green tea supplements twice daily for 14 days resulted in no significant differences in the pharmacokinetics of either tamoxifen or endoxifen with respect to peak plasma concentration (Cmax), systemic exposure (AUC), and trough plasma concentration (Cmin) compared to administration of tamoxifen alone. The combination was well tolerated, with all reported adverse events categorized as mild (grade 1) and none categorized as serious or severe (grade 3 or higher) during the entire study. Although some adverse events such as headache, polyuria, gastrointestinal side effects (e.g., constipation, dyspepsia), and minor liver biochemical disturbances were reported more often during concomitant treatment with green tea, most can be attributed to the high dose of green tea used or to the caffeine in green tea. The green tea supplements used were 1000 mg in strength and contained 150 mg of epigallocatechin-3-gallate (EGCG), the most abundant and biologically active catechin in green tea. According to the investigators, the total daily dose of EGCG taken by study participants is equivalent to the amount contained in approximately 5 to 6 cups of regular green tea. However, it is not known to what extent the data from this study may be applicable to other preparations of green tea such as infusions, since the bioavailability of EGCG and other catechins may vary between preparations.

MANAGEMENT: Until more information is available, patients treated with tamoxifen may consider avoiding or limiting the consumption of soy-containing products. Consumption of green tea and green tea extracts during tamoxifen therapy appears to be safe.

References

  1. Therapeutic Research Faculty (2008) Natural Medicines Comprehensive Database. http://www.naturaldatabase.com
  2. Braal CL, Hussaarts KGAM, Seuren L, et al. (2020) "Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen." Breast Cancer Res Treat, 184, p. 107-13

Switch to consumer interaction data

Moderate

levoFLOXacin food

Applies to: Levaquin (levofloxacin)

ADJUST DOSING INTERVAL: Food may reduce the oral absorption and bioavailability of levofloxacin. According to the drug product labeling, administration of levofloxacin 500 mg with food prolonged the time to peak concentration by 1 hour and decreased the Cmax decreased by 25% following administration of the oral solution and by 14% following administration of the oral tablet.

MANAGEMENT: To ensure maximal and consistent oral absorption, levofloxacin oral solution should be taken at least one hour before or two hours after meals. For administration of the oral solution with continuous enteral nutrition, some experts recommend that the tube feeding should be interrupted for one hour before and two hours after the dose of levofloxacin. The oral tablets may be taken without regard to food.

References

  1. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.