Skip to main content

Drug Interactions between lefamulin and trimipramine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

trimipramine lefamulin

Applies to: trimipramine and lefamulin

GENERALLY AVOID: Lefamulin may cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In two randomized, double-blind, double-dummy, active-controlled (moxifloxacin 400 mg once daily) studies, a concentration-dependent QTc prolongation effect of lefamulin was observed. The mean change from baseline QTcF around Tmax on day 3 or 4 was 13.6 msec for lefamulin 150 mg administered twice daily by infusion and 9.3 msec for lefamulin 600 mg administered twice daily orally, compared to 16.4 msec for moxifloxacin 400 mg administered once daily by infusion and 11.6 msec for moxifloxacin 400 mg administered once daily orally. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Coadministration of lefamulin with other drugs that can prolong the QT interval should generally be avoided. Caution and clinical monitoring are recommended if concomitant use is required. Patients should have electrocardiograms (ECGs) and electrolyte levels assessed during treatment as appropriate based on individual risk factors. The recommended dosage and infusion rate of lefamulin should not be exceeded, as the magnitude of QT prolongation may increase with increasing concentrations of the drug or increasing the rate of infusion. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. (2019) "Product Information. Xenleta (lefamulin)." Nabriva Therapeutics US, Inc.

Switch to consumer interaction data

Drug and food interactions

Moderate

lefamulin food

Applies to: lefamulin

ADJUST DOSING INTERVAL: Food may reduce the oral bioavailability of lefamulin. When a single 600 mg oral dose of lefamulin was administered with a high-calorie, high-fat breakfast (800 to 1000 calories; approximately 50% from fat), lefamulin peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by approximately 23% and 18%, respectively.

GENERALLY AVOID: Grapefruit juice may increase the oral bioavailability of lefamulin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but pharmacokinetic data are available for the potent CYP450 3A4 inhibitor, ketoconazole. When oral lefamulin was administered with oral ketoconazole, mean lefamulin peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 58% and 165%, respectively. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to lefamulin may increase the risk of QT interval prolongation, which has been associated with ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Lefamulin tablets should be taken at least one hour before or two hours after a meal. Patients should preferably avoid or limit the consumption of grapefruit and grapefruit juice during treatment with lefamulin.

References

  1. (2019) "Product Information. Xenleta (lefamulin)." Nabriva Therapeutics US, Inc.

Switch to consumer interaction data

Moderate

trimipramine food

Applies to: trimipramine

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References

  1. Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
  2. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.