Skip to main content

Drug Interactions between lactobacillus acidophilus and MLK F2

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

lidocaine BUPivacaine

Applies to: MLK F2 (bupivacaine / lidocaine / triamcinolone) and MLK F2 (bupivacaine / lidocaine / triamcinolone)

GENERALLY AVOID: Additive toxicities may occur when bupivacaine is coadministered with other local anesthetics. The potential for increased risk of systemic toxicities such as methemoglobinemia and central nervous system and cardiovascular adverse reactions should be recognized.

MANAGEMENT: Additional use of local anesthetics should generally be avoided within 96 hours following administration of bupivacaine. If coadministration cannot be avoided, overall local anesthetic exposure through 72 hours must be considered in addition to monitoring for the development of methemoglobinemia as well as central nervous system and cardiovascular adverse reactions. Signs and symptoms of methemoglobinemia may be delayed some hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia such as slate-grey cyanosis in buccal mucous membranes, lips, and nail beds; nausea; headache; dizziness; lightheadedness; lethargy; fatigue; dyspnea; tachypnea; tachycardia; palpitation; anxiety; and confusion. In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, shock, coma, and death. Early warning signs of central nervous system toxicity may include restlessness, anxiety, incoherent speech, dizziness, lightheadedness, numbness and tingling of the mouth and lips, metallic taste, tinnitus, blurred vision, tremors, twitching, depression, and drowsiness. Cardiovascular toxicity may include atrioventricular block, ventricular arrhythmias, cardiac arrest, and decreased cardiac output and arterial blood pressure due to depressed cardiac conductivity, excitability, and myocardial contractility. Patients should have cardiovascular and respiratory vital signs and state of consciousness constantly monitored while under treatment.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2021) "Product Information. Zynrelef (bupivacaine-meloxicam)." Heron Therapeutics

Switch to consumer interaction data

Moderate

triamcinolone lactobacillus acidophilus

Applies to: MLK F2 (bupivacaine / lidocaine / triamcinolone) and lactobacillus acidophilus

MONITOR: Probiotic use during immunosuppressant or intense antineoplastic therapy may theoretically increase the risk of infections from the live microorganisms contained in probiotic products. Patients may be immunosuppressed if they have recently received or are receiving alkylating agents, antimetabolites, radiation, some antirheumatic agents, high dosages of corticosteroids or adrenocorticotropic agents, or long-term topical or inhaled corticosteroids. Although probiotics are generally considered safe, with minimal to low pathogenicity, infections such as bacteremia and endocarditis with various strains commonly found in probiotics (e.g., lactobacilli, bifidobacteria, Bacillus subtilis) have been rarely reported, primarily in critically ill patients or patients with significant underlying medical conditions such as malignancy, organ transplantation, AIDS, valvular heart disease, diabetes mellitus, recent surgery, or compromised immune system. Lactobacillus bacteremia has also been reported following endoscopy. In addition, cases of lactobacillus pneumonia and liver abscess, as well as Saccharomyces fungemia, pneumonia, liver abscess, peritonitis and vaginitis, have been described in the medical literature.

MANAGEMENT: Caution is advised when probiotics are used during immunosuppressant or intense antineoplastic therapy. It may be advisable to avoid using probiotics, particularly products containing saccharomyces boulardii, in patients who are significantly immunosuppressed unless benefits are anticipated to outweigh the potential risk of infection.

References

  1. Salminen MK, Rautelin H, Tynkkynen S, et al. (2004) "Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG." Clin Infect Dis, 38, p. 62-9
  2. Salminen MK, Tynkkynen S, Rautelin H, et al. (2002) "Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland." Clin Infect Dis, 35, p. 1155-60
  3. Rautio M, Jousimies-Somer H, Kauma H, et al. (1999) "Liver abscess due to a Lactobacillus rhamnosus strain indistinguishable from L. rhamnosus strain GG." Clin Infect Dis, 28, p. 1159-60
  4. Schlegel L, Lemerle S, Geslin P (1998) "Lactobacillus species as opportunistic pathogens in immunocompromised patients." Eur J Clin Microbiol Infect Dis, 17, p. 887-8
  5. Saxelin M, Chuang NH, Chassy B, et al. (1996) "Lactobacilli and bacteremia in southern Finland, 1989-1992" Clin Infect Dis, 22, p. 564-6
  6. Husni RN, Gordon SM, Washington JA, Longworth DL (1997) "Lactobacillus bacteremia and endocarditis: review of 45 cases." Clin Infect Dis, 25, p. 1048-55
  7. Oggioni MR, Pozzi G, Valensin PE, Galieni P, Bigazzi C (1998) "Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis." J Clin Microbiol, 36, p. 325-6
  8. Mackay AD, Taylor MB, Kibbler CC, Hamilton-Miller JM (1999) "Lactobacillus endocarditis caused by a probiotic organism." Clin Microbiol Infect, 5, p. 290-2
  9. Borriello SP, Hammes WP, Holzapfel W, et al. (2003) "Safety of probiotics that contain lactobacilli or bifidobacteria." Clin Infect Dis, 36, p. 775-80
  10. Lolis N, Veldekis D, Moraitou H, et al. (2008) "Saccharomyces boulardii fungaemia in an intensive care unit patient treated with caspofungin." Crit Care, 12, epub
  11. Boyle RJ, Robins-Browne RM, Tang ML (2006) "Probiotic use in clinical practice: what are the risks?" Am J Clin Nutr, 83, p. 1256-64
  12. Pruccoli G, Silvestro E, Napoleone CP, Aidala E, Garazzino S, Scolfaro C (2024) Are probiotics safe? Bifidobacterium bacteremia in a child with severe heart failure. https://www.researchgate.net/publication/333853508_Are_probiotics_safe_Bifidobacterium_bacteremia_in_a_child_with_severe_heart_failure
View all 12 references

Switch to consumer interaction data

Drug and food interactions

Moderate

lidocaine food

Applies to: MLK F2 (bupivacaine / lidocaine / triamcinolone)

MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.

MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.

MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.

References

  1. Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
  2. (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
  3. (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
  4. (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
  5. (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
  6. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
  7. Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.