Skip to main content

Drug Interactions between isoniazid and selumetinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

isoniazid selumetinib

Applies to: isoniazid and selumetinib

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of selumetinib, which is primarily metabolized by CYP450 3A4 and to a lesser extent by CYP450 2C19, 1A2, 2C9, 2E1, and 3A5. Selumetinib also undergoes glucuronidation by UGT1A1 and UGT1A3. When coadministered with itraconazole, a potent CYP450 3A4 inhibitor, selumetinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 19% and 49%, respectively. When coadministered with fluconazole, a potent CYP450 2C19 and moderate CYP450 3A4 inhibitor, selumetinib Cmax and AUC increased by 26% and 53%, respectively. Concomitant use of erythromycin, a moderate CYP450 3A4 inhibitor, is predicted to increase selumetinib Cmax and AUC by 23% and 41%, respectively. No data are available for other, less potent CYP450 3A4 inhibitors. Theoretically, inhibition of CYP450 3A4 may also increase the plasma concentrations of N-desmethyl selumetinib, an active metabolite that is generated primarily by CYP450 2C19 and 1A2 and metabolized via the same routes as selumetinib. N-desmethyl selumetinib represents less than 10% of selumetinib levels in human plasma, but is approximately 3 to 5 times more potent than the parent compound and contributes about 21% to 35% of the overall pharmacologic activity. Increased exposures to selumetinib and N-desmethyl selumetinib may increase the risk and/or severity of serious adverse effects such as cardiomyopathy (decrease in left ventricular ejection fraction by 10% or more below baseline), ocular toxicity (blurred vision, photophobia, cataracts, ocular hypertension, retinal pigment epithelial detachment, retinal vein occlusion), gastrointestinal toxicity (diarrhea, colitis), skin toxicity (dermatitis acneiform, maculopapular rash, eczema), and musculoskeletal toxicity (creatine phosphokinase elevations, myalgia, rhabdomyolysis).

MANAGEMENT: Caution is advised when selumetinib is coadministered with CYP450 3A4 inhibitors. Dosage adjustments may be required based on clinical response and tolerance. Please refer to the product labeling for specific guidelines on dosing adjustments.

References

  1. (2020) "Product Information. Koselugo (selumetinib)." Astra-Zeneca Pharmaceuticals

Switch to consumer interaction data

Drug and food interactions

Major

selumetinib food

Applies to: selumetinib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of selumetinib, which undergoes metabolism primarily by CYP450 3A4 and to a lesser extent by CYP450 2C19, 1A2, 2C9, 2E1 and 3A5, as well as glucuronidation by UGT1A1 and UGT1A3. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. When coadministered with itraconazole, a potent CYP450 3A4 inhibitor, selumetinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 19% and 49%, respectively. When coadministered with fluconazole, a potent CYP450 2C19 and moderate CYP450 3A4 inhibitor, selumetinib Cmax and AUC increased by 26% and 53%, respectively. Concomitant use of erythromycin, a moderate CYP450 3A4 inhibitor, is predicted to increase selumetinib Cmax and AUC by 23% and 41%, respectively. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to selumetinib may increase the risk and/or severity of serious adverse effects such as cardiomyopathy (decrease in left ventricular ejection fraction by 10% or more below baseline), ocular toxicity (blurred vision, photophobia, cataracts, ocular hypertension, retinal pigment epithelial detachment, retinal vein occlusion), gastrointestinal toxicity (diarrhea, colitis), skin toxicity (dermatitis acneiform, maculopapular rash, eczema), and musculoskeletal toxicity (creatine phosphokinase elevations, myalgia, rhabdomyolysis).

ADJUST DOSING INTERVAL: Food may decrease the rate and extent of the oral absorption of selumetinib. When a single 75 mg dose of selumetinib (1.5 times the approved maximum recommended dose) was administered with a high-fat meal (1000 calories; 50% fat) in healthy adults, mean Cmax and AUC of selumetinib decreased by 50% and 16%, respectively, and time to reach peak concentration (Tmax) was delayed by approximately 1.5 hours compared to administration in the fasted state. When a single 50 mg dose of selumetinib was administered with a low-fat meal (400 calories; 25% fat) in healthy adults, selumetinib Cmax and AUC decreased by 60% and 38%, respectively, and Tmax was delayed by approximately 0.9 hours.

MANAGEMENT: Selumetinib should be administered on an empty stomach at least 1 hour before or 2 hours after a meal. Patients should avoid consumption of grapefruit, grapefruit juice, or supplements that contain grapefruit during treatment with selumetinib.

References

  1. (2020) "Product Information. Koselugo (selumetinib)." Astra-Zeneca Pharmaceuticals

Switch to consumer interaction data

Moderate

isoniazid food

Applies to: isoniazid

GENERALLY AVOID: Concurrent use of isoniazid (INH) in patients who ingest alcohol daily may result in an increased incidence of both hepatotoxicity and peripheral neuropathy. The increase in hepatotoxicity may be due to an additive risk as both alcohol and INH are individually associated with this adverse reaction. INH-associated hepatotoxicity is believed to be due to an accumulation of toxic metabolites and may also be partly immune mediated, though the exact mechanisms are not universally agreed upon. INH is metabolized by N-acetyltransferase and CYP450 2E1. The rate of acetylation is genetically determined and generally classified as slow or rapid. Slow acetylators have been identified by some studies as having a higher risk of hepatotoxicity; therefore, this interaction may be more significant for patients who fall into this category. Other studies have postulated that alcohol-mediated CYP450 2E1 induction may play a role, as this isoenzyme is involved in INH metabolism and may be responsible for producing hepatotoxic metabolites. However, available literature is conflicting. The labeling for some INH products lists daily alcohol use or chronic alcoholism as a risk factor for hepatitis, but not all studies have found a significant association between alcohol use and INH-induced hepatotoxicity. Additionally, INH and alcohol are both associated with pyridoxine (B6) deficiency, which may increase the risk of peripheral neuropathy.

GENERALLY AVOID: Concomitant administration of isoniazid (INH) with foods containing tyramine and/or histamine may increase the risk of symptoms relating to tyramine- and/or histamine toxicity (e.g., headache, diaphoresis, flushing, palpitations, and hypotension). The proposed mechanism is INH-mediated inhibition of monoamine oxidase (MAO) and diamine oxidase (DAO), enzymes responsible for the metabolism of tyramine and histamine, respectively. Some authors have suggested that the reactions observed are mainly due to INH's effects on DAO instead of MAO or the amounts of histamine instead of tyramine present in the food. A Japanese case report recorded an example in 8 out of 25 patients on the tuberculosis ward who developed an accidental histamine poisoning after ingesting a fish paste (saury). Patients developed allergy-like symptoms, which started between 20 minutes and 2 hours after ingesting the food. A high-level of histamine (32 mg/100 g of fish) was confirmed in the saury paste and all 8 patients were both on INH and had reduced MAO concentrations. The 17 remaining patients were not on INH (n=5) or reported not eating the saury paste (n=12).

ADJUST DOSING INTERVAL: Administration with food significantly reduces oral isoniazid (INH) absorption, increasing the risk of therapeutic failure or resistance. The mechanism is unknown. Pharmacokinetic studies completed in both healthy volunteers (n=14) and tuberculosis patients (n=20 treatment-naive patients during days 1 to 3 of treatment) have resulted in almost doubling the time to reach INH's maximum concentration (tmax) and a reduction in isoniazid's maximum concentration (Cmax) of 42%-51% in patients who consumed high-fat or high-carbohydrate meals prior to INH treatment.

MANAGEMENT: The manufacturer of oral forms of isoniazid (INH) recommends administration on an empty stomach (i.e., 30 minutes before or 2 hours after meals). Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and INH concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with INH. Concomitant pyridoxine (B6) administration is also recommended to reduce the risk of peripheral neuropathy, with some authorities suggesting a dose of at least 10 mg/day. Patients should be advised to avoid foods containing tyramine (e.g., aged cheese, cured meats such as sausages and salami, fava beans, sauerkraut, soy sauce, beer, or red wine) or histamine (e.g., skipjack, tuna, mackerel, salmon) during treatment with isoniazid. Consultation of product labeling for combination products containing isoniazid and/or relevant guidelines may be helpful for more specific recommendations.

References

  1. Smith CK, Durack DT (1978) "Isoniazid and reaction to cheese." Ann Intern Med, 88, p. 520-1
  2. Dimartini A (1995) "Isoniazid, tricyclics and the ''cheese reaction''." Int Clin Psychopharmacol, 10, p. 197-8
  3. Uragoda CG, Kottegoda SR (1977) "Adverse reactions to isoniazid on ingestion of fish with a high histamine content." Tubercle, 58, p. 83-9
  4. Self TH, Chrisman CR, Baciewicz AM, Bronze MS (1999) "Isoniazid drug and food interactions." Am J Med Sci, 317, p. 304-11
  5. (2021) "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India), 2
  6. (2023) "Product Information. Isoniazid (isoniazid)." Chartwell RX, LLC.
  7. (2023) "Product Information. Isoniazid (Arrotex) (isoniazid)." Arrotex Pharmaceuticals Pty Ltd
  8. (2023) "Product Information. Isoniazid (isoniazid)." RPH Pharmaceuticals AB
  9. Saukkonen JJ, Cohn DL, Jasmer RM, et al. (2006) "An official ATS statement: hepatotoxicity of antituberculosis therapy." Am J Respir Crit Care Med, 174, p. 935-52
  10. Bouazzi OE, Hammi S, Bourkadi JE, et al. (2024) First line anti-tuberculosis induced hepatotoxicity: incidence and risk factors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326068/
  11. Wang P, Pradhan K, Zhong XB, Ma X (2016) "Isoniazid metabolism and hepatoxicity." Acta Pharm Sin B, 6, p. 384-92
  12. Saktiawati AM, Sturkenboom MG, Stienstra Y, et al. (2016) "Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment naive TB patients: a randomized cross-over trial." J Antimicrob Chemother, 71, p. 703-10
  13. Hahn JA, Ngabirano C, Fatch R, et al. (2023) "Safety and tolerability of isoniazid preventive therapy for tuberculosis for persons with HIV with and without alcohol use." AIDS, 37, p. 1535-43
  14. Huang YS, Chern HD, Su WJ, et al. (2003) "Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis." Hepatology, 37, p. 924-30
  15. Sousou JM, Griffith EM, Marsalisi C, Reddy P (2024) Pyridoxine deficiency and neurologic dysfunction: an unlikely association. https://www.cureus.com/articles/188310-pyridoxine-deficiency-and-neurologic-dysfunction-an-unlikely-association?score_article=true#!/
  16. Miki M, Ishikawa T, Okayama H (2005) "An outbreak of histamine poisoning after ingestion of the ground saury paste in eight patients taking isoniazid in tuberculous ward." Intern Med, 44, p. 1133-6
  17. (2021) "Product Information. Isotamine (isoniazid)." Bausch Health, Canada Inc.
View all 17 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.