Skip to main content

Drug Interactions between Hydromorph Contin and Valrelease

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

diazePAM HYDROmorphone

Applies to: Valrelease (diazepam) and Hydromorph Contin (hydromorphone)

GENERALLY AVOID: Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants (e.g., nonbenzodiazepine sedatives/hypnotics, anxiolytics, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol) may result in profound sedation, respiratory depression, coma, and death. The risk of hypotension may also be increased with some CNS depressants (e.g., alcohol, benzodiazepines, phenothiazines).

MANAGEMENT: The use of opioids in conjunction with benzodiazepines or other CNS depressants should generally be avoided unless alternative treatment options are inadequate. If coadministration is necessary, the dosage and duration of each drug should be limited to the minimum required to achieve desired clinical effect, with cautious titration and dosage adjustments when needed. Patients should be monitored closely for signs and symptoms of respiratory depression and sedation, and advised to avoid driving or operating hazardous machinery until they know how these medications affect them. Cough medications containing opioids (e.g., codeine, hydrocodone) should not be prescribed to patients using benzodiazepines or other CNS depressants including alcohol. For patients who have been receiving extended therapy with both an opioid and a benzodiazepine and require discontinuation of either medication, a gradual tapering of dose is advised, since abrupt withdrawal may lead to withdrawal symptoms. Severe cases of benzodiazepine withdrawal, primarily in patients who have received excessive doses over a prolonged period, may result in numbness and tingling of extremities, hypersensitivity to light and noise, hallucinations, and epileptic seizures.

References

  1. US Food and Drug Administration (2016) FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning. http://www.fda.gov/downloads/Drugs/DrugSafety/UCM518672.pdf

Switch to consumer interaction data

Drug and food interactions

Major

HYDROmorphone food

Applies to: Hydromorph Contin (hydromorphone)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including hydromorphone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Consumption of alcohol while taking sustained-release formulations of hydromorphone may cause rapid release of the drug, resulting in high systemic levels of hydromorphone that may be potentially lethal even in opioid-tolerant patients. Alcohol appears to disrupt the extended release mechanism, causing 'dose-dumping' into the bloodstream. In 48 healthy volunteers, coadministration of a 12 mg dose of sustained-release hydromorphone with 240 mL of 40% (80 proof) alcohol resulted in a mean peak hydromorphone concentration (Cmax) approximately six times greater than when taken with water. One subject had a 16-fold increase in hydromorphone Cmax with 40% alcohol compared to water. In some subjects, coadministration with 8 ounces of 4% alcohol (equivalent to 2/3 of a typical serving of beer) resulted in almost twice the hydromorphone Cmax than when coadministered with water. The effect of alcohol was more pronounced in a fasted state.

MANAGEMENT: Patients taking sustained-release formulations of hydromorphone should not consume alcohol or use medications that contain alcohol on days of hydromorphone dosing. In general, potent narcotics such as hydromorphone should not be combined with alcohol.

References

  1. Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
  2. (2001) "Product Information. Dilaudid (hydromorphone)." Knoll Pharmaceutical Company
  3. FDA. U.S. Food and Drug Administration (2005) Healthcare Professional Sheet. FDA Alert [07/2005]: alcohol-palladone interaction. http://www.fda.gov/medwatch/SAFETY/2005/safety05.htm#Palladone

Switch to consumer interaction data

Moderate

diazePAM food

Applies to: Valrelease (diazepam)

GENERALLY AVOID: Acute alcohol ingestion may potentiate the CNS depression and other CNS effects of many benzodiazepines. Tolerance may develop with chronic ethanol use. The mechanism may be decreased clearance of the benzodiazepines because of CYP450 hepatic enzyme inhibition. Also, it has been suggested that the cognitive deficits induced by benzodiazepines may be increased in patients who chronically consume large amounts of alcohol.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. However, the interaction seems to affect primarily those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability), presumably due to the fact that grapefruit juice inhibits intestinal rather than hepatic CYP450 3A4. Because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised to avoid alcohol during benzodiazepine therapy. Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. (2002) "Product Information. Valium (diazepam)." Roche Laboratories
  4. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  5. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  6. (2001) "Product Information. Doral (quazepam)." Wallace Laboratories
  7. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  8. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  9. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  10. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  11. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  12. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  13. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  14. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  15. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  16. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  17. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  18. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  19. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  20. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  22. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  23. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  24. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  25. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  26. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  27. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  28. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  29. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  30. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  31. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  32. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  33. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  34. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 34 references

Switch to consumer interaction data

Minor

diazePAM food

Applies to: Valrelease (diazepam)

One study has reported a 22% reduction in diazepam plasma levels when coadministered with caffeine. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that changes to caffeine consumption habits may impact the efficacy of diazepam therapy.

References

  1. Ghoneim MM, Hinrichs JV, Chiang CK, Loke WH (1986) "Pharmacokinetic and pharmacodynamic interactions between caffeine and diazepam." J Clin Psychopharmacol, 6, p. 75-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.