Skip to main content

Drug Interactions between finerenone and Phenytek

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

phenytoin finerenone

Applies to: Phenytek (phenytoin) and finerenone

GENERALLY AVOID: Coadministration with potent or moderate inducers of CYP450 3A4 may significantly decrease the plasma concentrations of finerenone, which is primarily metabolized by CYP450 3A4 (90%) and to a minor extent by CYP450 2C8 (10%) to inactive metabolites. Pharmacokinetic modeling simulations suggest that concomitant use of finerenone with 600 mg once daily rifampin, a potent CYP450 3A4 inducer, decreases finerenone peak plasma concentration (Cmax) and systemic exposure (AUC) by 86% and 93%, respectively. Efavirenz, a moderate CYP450 3A4 inducer, given at 600 mg once daily is predicted to decrease finerenone Cmax by 68% and AUC by 81%. Reduced therapeutic efficacy of finerenone may occur.

MANAGEMENT: Concomitant use of finerenone with potent or moderate CYP450 3A4 inducers should generally be avoided. Alternative agents with no or minimal CYP450 3A4 induction potential are recommended whenever possible.

References

  1. Cerner Multum, Inc. "Australian Product Information."
  2. (2021) "Product Information. Kerendia (finerenone)." Bayer Pharmaceutical Inc
  3. (2022) "Product Information. Kerendia (finerenone)." Bayer Plc

Switch to consumer interaction data

Drug and food interactions

Major

finerenone food

Applies to: finerenone

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of finerenone. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. Pharmacokinetic modeling simulations suggest that concomitant use of finerenone with 200 mg twice daily itraconazole, a potent CYP450 3A4 inhibitor, increases finerenone peak plasma concentration (Cmax) and systemic exposure (AUC) by 137% and 531%, respectively. Clarithromycin, another potent CYP450 3A4 inhibitor, given at 500 mg twice daily is predicted to increase finerenone Cmax by 125% and AUC by 428%. Additionally, drug interaction studies showed that concomitant use of finerenone with 500 mg thrice daily erythromycin, a moderate CYP450 3A4 inhibitor, increased mean finerenone Cmax and AUC by 88% and 248%, respectively. Verapamil, another moderate CYP450 3A4 inhibitor, given as a 240 mg controlled-release tablet once daily increased mean finerenone Cmax by 120% and AUC by 170%. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict. High exposure to finerenone may potentiate the risk of hyperkalemia, and the risk may be further increased with decreasing kidney function and higher baseline potassium levels.

MONITOR CLOSELY: Dietary intake of excess potassium, especially via salt substitutes, may increase the risk of hyperkalemia in patients who are using finerenone. Patients with diabetes, heart failure, dehydration, or renal insufficiency have a greater risk of developing hyperkalemia.

Administration of finerenone with high-fat, high-calorie food decreased finerenone Cmax by 19%, increased AUC by 21%, and prolonged the time to reach Cmax to 2.5 hours. These changes are not considered clinically relevant.

MANAGEMENT: Patients receiving finerenone therapy should be instructed to avoid consumption of grapefruit or grapefruit juice. In addition, patients should receive dietary counseling and be advised not to use potassium-containing salt substitutes or over-the-counter potassium supplements without consulting their physician. If salt substitutes or supplements are used concurrently, more frequent monitoring of serum potassium levels is recommended. Patients should also be advised to seek medical attention if they experience signs and symptoms of hyperkalemia such as nausea, vomiting, weakness, listlessness, tingling of the extremities, paralysis, confusion, weak pulse, and a slow or irregular heartbeat. Finerenone may be taken with or without food.

References

  1. Cerner Multum, Inc. "Australian Product Information."
  2. (2021) "Product Information. Kerendia (finerenone)." Bayer Pharmaceutical Inc
  3. (2022) "Product Information. Kerendia (finerenone)." Bayer Plc

Switch to consumer interaction data

Moderate

phenytoin food

Applies to: Phenytek (phenytoin)

ADJUST DOSING INTERVAL: Phenytoin bioavailability may decrease to subtherapeutic levels when the suspension is given concomitantly with enteral feedings. The mechanism may be related to phenytoin binding to substances in the enteral formula (e.g., calcium, protein) and/or binding to the tube lumen. Data have been conflicting and some studies have reported no changes in phenytoin levels, while others have reported significant reductions.

MONITOR: Acute consumption of alcohol may increase plasma phenytoin levels. Chronic consumption of alcohol may decrease plasma phenytoin levels. The mechanism of this interaction is related to induction of phenytoin metabolism by ethanol during chronic administration. Other hydantoin derivatives may be similarly affected by ethanol.

MANAGEMENT: Some experts have recommended interrupting the feeding for 2 hours before and after the phenytoin dose, giving the phenytoin suspension diluted in water, and flushing the tube with water after administration; however, this method may not entirely avoid the interaction and is not always clinically feasible. Patients should be closely monitored for clinical and laboratory evidence of altered phenytoin efficacy and levels upon initiation and discontinuation of enteral feedings. Dosage adjustments or intravenous administration may be required until therapeutic serum levels are obtained. In addition, patients receiving phenytoin therapy should be warned about the interaction between phenytoin and ethanol and they should be advised to notify their physician if they experience worsening of seizure control or symptoms of toxicity, including drowsiness, visual disturbances, change in mental status, nausea, or ataxia.

References

  1. Sandor P, Sellers EM, Dumbrell M, Khouw V (1981) "Effect of short- and long-term alcohol use on phenytoin kinetics in chronic alcoholics." Clin Pharmacol Ther, 30, p. 390-7
  2. Holtz L, Milton J, Sturek JK (1987) "Compatibility of medications with enteral feedings." JPEN J Parenter Enteral Nutr, 11, p. 183-6
  3. Sellers EM, Holloway MR (1978) "Drug kinetics and alcohol ingestion." Clin Pharmacokinet, 3, p. 440-52
  4. (2001) "Product Information. Dilantin (phenytoin)." Parke-Davis
  5. Doak KK, Haas CE, Dunnigan KJ, et al. (1998) "Bioavailability of phenytoin acid and phenytoin sodium with enteral feedings." Pharmacotherapy, 18, p. 637-45
  6. Rodman DP, Stevenson TL, Ray TR (1995) "Phenytoin malabsorption after jejunostomy tube delivery." Pharmacotherapy, 15, p. 801-5
  7. Au Yeung SC, Ensom MH (2000) "Phenytoin and enteral feedings: does evidence support an interaction?" Ann Pharmacother, 34, p. 896-905
  8. Ozuna J, Friel P (1984) "Effect of enteral tube feeding on serum phenytoin levels." J Neurosurg Nurs, 16, p. 289-91
  9. Faraji B, Yu PP (1998) "Serum phenytoin levels of patients on gastrostomy tube feeding." J Neurosci Nurs, 30, p. 55-9
  10. Marvel ME, Bertino JS (1991) "Comparative effects of an elemental and a complex enteral feeding formulation on the absorption of phenytoin suspension." JPEN J Parenter Enteral Nutr, 15, p. 316-8
  11. Fleisher D, Sheth N, Kou JH (1990) "Phenytoin interaction with enteral feedings administered through nasogastric tubes." JPEN J Parenter Enteral Nutr, 14, p. 513-6
  12. Haley CJ, Nelson J (1989) "Phenytoin-enteral feeding interaction." DICP, 23, p. 796-8
  13. Guidry JR, Eastwood TF, Curry SC (1989) "Phenytoin absorption in volunteers receiving selected enteral feedings." West J Med, 150, p. 659-61
  14. Krueger KA, Garnett WR, Comstock TJ, Fitzsimmons WE, Karnes HT, Pellock JM (1987) "Effect of two administration schedules of an enteral nutrient formula on phenytoin bioavailability." Epilepsia, 28, p. 706-12
  15. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  16. Cerner Multum, Inc. "Australian Product Information."
View all 16 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.