Skip to main content

Drug Interactions between fexinidazole and tazemetostat

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

tazemetostat fexinidazole

Applies to: tazemetostat and fexinidazole

GENERALLY AVOID: Coadministration with moderate or potent CYP450 3A4 inhibitors may significantly increase the plasma concentrations of tazemetostat, which is primarily metabolized by the isoenzyme. According to the product labeling, coadministration of tazemetostat (400 mg twice daily) with the moderate CYP450 3A4 inhibitor fluconazole increased the tazemetostat steady state exposure (AUC 0 to 8 hours) by 3.1-fold and peak plasma concentration by 2.3-fold. Clinically, this interaction may result in an increased risk of the frequency or severity of adverse reactions due to tazemetostat such as secondary malignancies, hemorrhage, pleural effusion, skin infection, dyspnea, pain, and respiratory distress.

MANAGEMENT: Concomitant use of tazemetostat with moderate or potent CYP450 3A4 inhibitors should generally be avoided. Alternative therapeutic agents with less inhibitory potential should be considered whenever possible. If coadministration with a moderate CYP450 3A4 inhibitor is required and no other alternatives are possible, the dose of tazemetostat should be reduced as per manufacturer recommendations. After the inhibitor has been discontinued for 3 elimination half-lives, the tazemetostat dose that was taken prior to initiating the inhibitor may be resumed. Patients should be advised to notify their health care professional if they experience signs or symptoms of possible tazemetostat-related adverse effects including secondary malignancies, hemorrhage, pleural effusion, skin infection, dyspnea, pain, and respiratory distress.

References

  1. (2020) "Product Information. Tazverik (tazemetostat)." Epizyme, Inc

Switch to consumer interaction data

Drug and food interactions

Major

tazemetostat food

Applies to: tazemetostat

GENERALLY AVOID: Consumption of grapefruit or grapefruit juice during tazemetostat therapy may significantly increase the plasma concentrations of tazemetostat. The proposed mechanism is inhibition of the CYP450 3A4-mediated metabolism of tazemetostat by certain compounds in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). According to the product labeling, coadministration of tazemetostat (400 mg twice daily) with the moderate CYP450 3A4 inhibitor fluconazole increased the tazemetostat steady state exposure (AUC 0 to 8 hours) by 3.1-fold and peak plasma concentration by 2.3-fold. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict. Clinically, this interaction may result in an increased risk of the frequency or severity of adverse reactions due to tazemetostat such as hemorrhage, pleural effusion, skin infection, dyspnea, pain, and respiratory distress.

MANAGEMENT: The manufacturer advises that patients treated with tazemetostat should avoid consumption of grapefruit or grapefruit juice.

References

  1. (2020) "Product Information. Tazverik (tazemetostat)." Epizyme, Inc

Switch to consumer interaction data

Moderate

fexinidazole food

Applies to: fexinidazole

GENERALLY AVOID: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.

GENERALLY AVOID: The potential exists for pharmacodynamic interactions and/or toxicities between fexinidazole and herbal medicines and supplements. In addition, grapefruit and grapefruit juice may, theoretically, increase the plasma concentrations of fexinidazole and the risk of adverse effects. The mechanism is decreased clearance of fexinidazole due to inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

ADJUST DOSING INTERVAL: Food significantly increases the oral absorption and bioavailability of fexinidazole. Compared with the fasted state, the systemic exposure (AUC) of fexinidazole and its metabolites (fexinidazole sulfoxide [M1], fexinidazole sulfone [M2]) were 4- to 5-fold higher following administration with food.

MANAGEMENT: To ensure maximal oral absorption, fexinidazole should be administered with food each day at about the same time of day (e.g., during or immediately after the main meal of the day). Coadministration of fexinidazole with grapefruit, grapefruit juice, or herbal medicines or supplements should be avoided. Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction and instructed to avoid alcoholic beverages and products containing alcohol or propylene glycol while using oral, intravenous, or vaginal preparations of a nitroimidazole. Alcoholic beverages should not be consumed for at least 48 hours after completion of fexinidazole therapy.

References

  1. Giannini AJ, DeFrance DT (1983) "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol, 20, p. 509-15
  2. Alexander I (1985) "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract, 39, p. 292-3
  3. Harries DP, Teale KF, Sunderland G (1990) "Metronidazole and alcohol: potential problems." Scott Med J, 35, p. 179-80
  4. Edwards DL, Fink PC, Van Dyke PO (1986) "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm, 5, p. 999-1000
  5. (2002) "Product Information. Flagyl (metronidazole)." Searle
  6. Williams CS, Woodcock KR (2000) "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother, 34, p. 255-7
  7. Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP (2002) "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother, 36, p. 971-4
  8. Krulewitch CJ (2003) "An unexpected adverse drug effect." J Midwifery Womens Health, 48, p. 67-8
  9. (2004) "Product Information. Tindamax (tinidazole)." Presutti Laboratories Inc
  10. (2021) "Product Information. Fexinidazole (fexinidazole)." sanofi-aventis
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.