Skip to main content

Drug Interactions between fexinidazole and MRV

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

mixed respiratory vaccine fexinidazole

Applies to: MRV (mixed respiratory vaccine) and fexinidazole

MONITOR: The administration of inactivated, killed, or otherwise noninfectious vaccines to immunosuppressed patients is generally safe but may be associated with a diminished or suboptimal immunologic response due to antibody inhibition. Such patients may include those who have recently received or are receiving immunosuppressive agents, antilymphocyte globulins, alkylating agents, antimetabolites, radiation, some antirheumatic agents, high dosages of corticosteroids or adrenocorticotropic agents (e.g., greater than or equal to 2 mg/kg/day or 20 mg/day of prednisone or equivalent for 14 consecutive days or more), or long-term topical or inhaled corticosteroids.

MANAGEMENT: In general, the U.S. Department of Public Health Advisory Committee on Immunization Practices (ACIP) recommends that inactivated or killed vaccines be administered to non-HIV immunosuppressed patients according to the same guidelines as for healthy patients. However, higher dosages, more frequent boosters, and/or serological testing may be required in some cases. Local guidelines and prescribing information for individual vaccines should be consulted. For Haemophilus influenzae b vaccine, some experts recommend that it be administered at least 2 weeks before starting or 3 months after discontinuing chemotherapy when used in patients with Hodgkin's disease. For rabies vaccine, some authorities suggest that immunosuppressive agents should generally be avoided during postexposure therapy except when absolutely necessary for the treatment of other conditions. For SARS-CoV-2 (COVID-19) vaccines, vaccination should generally be completed at least 2 weeks before initiation or resumption of immunosuppressive therapies; however, decisions to delay or temporarily withhold immunosuppressive therapy to complete COVID-19 vaccination should consider the individual's risks relative to their underlying condition. Some authorities recommend administering the COVID-19 vaccine approximately 4 weeks prior to the next scheduled therapy for those on B-cell-depleting therapies on a continuing basis. Additional shots, boosters, and even revaccination may be appropriate depending on age, prior COVID-19 vaccine formulation(s) received, current or planned immunosuppressive therapy, and other factors in individuals with moderate to severe immune compromise due to medical conditions or immunosuppressive medications or treatments (e.g., solid organ transplant recipients on immunosuppressive therapy; patients on active treatment for solid tumor and hematologic malignancies). Vaccines may generally be administered to patients receiving corticosteroids as replacement therapy (e.g., for Addison's disease).

References

  1. "Product Information. Fluzone (influenza virus vaccine, inactivated)." Connaught Laboratories Inc
  2. "Product Information. Omnihib (haemophilus b conjugate vaccine (obsolete))." SmithKline Beecham
  3. "Product Information. Havrix (HepA) (hepatitis A adult vaccine)." SmithKline Beecham
  4. CDC. Centers for Disease Control and Prevention/ (1993) "Recommendations of the advisory committtee on immunization practices (ACIP): use of vaccines and immune globulins in persons with altered immunocompetence." MMWR Morb Mortal Wkly Rep, 42(RR-04), p. 1-18
  5. (2022) "Product Information. Imovax Rabies (rabies vaccine, human diploid cell)." sanofi pasteur
  6. (2003) "Product Information. Biothrax (anthrax vaccine adsorbed)." Emergent BioSolutions Inc.
  7. Cerner Multum, Inc. "Australian Product Information."
  8. (2022) "Product Information. Influenza Virus Vaccine, H5N1, Inactivated (influenza virus vaccine, H5N1, inactivated)." GlaxoSmithKline
  9. CDC Centers for Disease Control and Prevention (2019) General Best Practice Guidelines for Immunization: Altered Immunocompetence. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/immunocompetence.pdf
  10. Department of Health. National Health Service (2019) Immunisation Against Infectious Disease - "The Green Book". Chapter 6: Contraindications and special considerations. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/655225/Greenbook_chapter_6.pdf
  11. CDC Centers for Disease Control and Prevention (2022) Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html
  12. Centers for Disease Control and Prevention (2023) Use of COVID-19 vaccines in the U.S. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html
  13. UK Health Security Agency (2023) COVID-19: the green book, chapter 14a https://www.gov.uk/government/publications/covid-19-the-green-book-chapter-14a
  14. Public Health Agency of Canada (2023) Immunization of immunocompromised persons: Canadian immunization guide https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-3-vaccination-specific-populations/page-8-immunization-immunocompromised-p
  15. Public Health Agency of Canada (2023) COVID-19 vaccines: Canadian immunization guide. https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-26-covid-19-vaccine.html
  16. Australian Government. Department of Health and Aged Care (2023) Australian immunisation handbook: COVID-19. https://immunisationhandbook.health.gov.au/contents/vaccine-preventable-diseases/covid-19
View all 16 references

Switch to consumer interaction data

Drug and food interactions

Moderate

fexinidazole food

Applies to: fexinidazole

GENERALLY AVOID: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.

GENERALLY AVOID: The potential exists for pharmacodynamic interactions and/or toxicities between fexinidazole and herbal medicines and supplements. In addition, grapefruit and grapefruit juice may, theoretically, increase the plasma concentrations of fexinidazole and the risk of adverse effects. The mechanism is decreased clearance of fexinidazole due to inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

ADJUST DOSING INTERVAL: Food significantly increases the oral absorption and bioavailability of fexinidazole. Compared with the fasted state, the systemic exposure (AUC) of fexinidazole and its metabolites (fexinidazole sulfoxide [M1], fexinidazole sulfone [M2]) were 4- to 5-fold higher following administration with food.

MANAGEMENT: To ensure maximal oral absorption, fexinidazole should be administered with food each day at about the same time of day (e.g., during or immediately after the main meal of the day). Coadministration of fexinidazole with grapefruit, grapefruit juice, or herbal medicines or supplements should be avoided. Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction and instructed to avoid alcoholic beverages and products containing alcohol or propylene glycol while using oral, intravenous, or vaginal preparations of a nitroimidazole. Alcoholic beverages should not be consumed for at least 48 hours after completion of fexinidazole therapy.

References

  1. Giannini AJ, DeFrance DT (1983) "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol, 20, p. 509-15
  2. Alexander I (1985) "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract, 39, p. 292-3
  3. Harries DP, Teale KF, Sunderland G (1990) "Metronidazole and alcohol: potential problems." Scott Med J, 35, p. 179-80
  4. Edwards DL, Fink PC, Van Dyke PO (1986) "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm, 5, p. 999-1000
  5. (2002) "Product Information. Flagyl (metronidazole)." Searle
  6. Williams CS, Woodcock KR (2000) "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother, 34, p. 255-7
  7. Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP (2002) "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother, 36, p. 971-4
  8. Krulewitch CJ (2003) "An unexpected adverse drug effect." J Midwifery Womens Health, 48, p. 67-8
  9. (2004) "Product Information. Tindamax (tinidazole)." Presutti Laboratories Inc
  10. (2021) "Product Information. Fexinidazole (fexinidazole)." sanofi-aventis
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.