Skip to main content

Drug Interactions between ExeClear-C and imatinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

codeine imatinib

Applies to: ExeClear-C (codeine / guaifenesin) and imatinib

MONITOR: Drugs that are inhibitors of CYP450 2D6 may interfere with the analgesic effect of codeine. The mechanism is decreased in vivo conversion of codeine to morphine, a metabolic reaction mediated by CYP450 2D6. If an inhibitor is started after a stable dose of codeine is achieved, reduced analgesia and possible opioid withdrawal may result. Conversely, ceasing CYP450 2D6 inhibitor therapy may lead to increased morphine levels, increasing the risk of opioid-related adverse effects.

MANAGEMENT: The possibility of reduced or inadequate pain relief should be considered in patients receiving codeine with drugs that inhibit CYP450 2D6. An increase in the codeine dosage or a different analgesic agent may be necessary in patients requiring therapy with CYP450 2D6 inhibitors. If concurrent therapy is used and the CYP450 2D6 inhibitor is stopped, the dose of codeine may need to be reduced and the patient should be monitored for signs and symptoms of respiratory depression or sedation. In addition, it should be noted that rolapitant, a moderate CYP450 2D6 inhibitor, may interfere with the analgesic effects of codeine for at least 28 days after administration of rolapitant. The manufacturer's prescribing information should be consulted for further information.

References

  1. Desmeules J, Dayer P, Gascon MP, Magistris M (1989) "Impact of genetic and environmental factors on codeine analgesia." Clin Pharmacol Ther, 45, p. 122
  2. Sindrup SH, Arendt-Nielsen L, Brosen K, et al. (1992) "The effect of quinidine on the analgesic effect of codeine." Eur J Clin Pharmacol, 42, p. 587-92
  3. Sindrup SH, Hofmann U, Asmussen J, Mikus G, Brosen K, Nielsen F, Ingwersen SH, Broen Christensen C (1996) "Impact of quinidine on plasma and cerebrospinal fluid concentrations of codeine and morphine after codeine intake." Eur J Clin Pharmacol, 49, p. 503-9
  4. Sindrup SH, Brosen K, Bjerring P, et al. (1991) "Codeine increases pain threshold to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine." Clin Pharmacol Ther, 49, p. 686-93
  5. Poulsen L, Brosen K, Srendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH (1996) "Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects." Eur J Clin Pharmacol, 51, p. 289-95
  6. Desmeules J, Gascon MP, Dayer P, Magistris M (1991) "Impact of environmental and genetic factors on codeine analgesia." Eur J Clin Pharmacol, 41, p. 23-6
  7. Caraco Y, Sheller J, Wood JJ (1996) "Pharmacogenetic determination of the effects of codeine and prediction of drug interactions." J Pharmacol Exp Ther, 278, p. 1165-74
  8. Caraco Y, Sheller J, Wood AJJ (1999) "Impact of ethnic origin and quinidine coadministration on codeine's disposition and pharmacodynamic effects." J Pharmacol Exp Ther, 290, p. 413-22
  9. Hersh EV, Moore PA (2004) "Drug interactions in dentistry: the importance of knowing your CYPs." J Am Dent Assoc, 135, p. 298-311
  10. Vevelstad M, Pettersen S, Tallaksen C, Brors O (2009) "O-demethylation of codeine to morphine inhibited by low-dose levomepromazine." Eur J Clin Pharmacol, 65, p. 795-801
  11. Thorn CF, Klein TE, Altman RB (2009) "Codeine and morphine pathway." Pharmacogenet Genomics, 19, p. 556-8
  12. Zhou SF (2009) "Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II." Clin Pharmacokinet, 48, p. 761-804
  13. (2015) "Product Information. Varubi (rolapitant)." Tesaro Inc.
  14. (2023) "Product Information. Codeine Sulfate (codeine)." Hikma USA (formerly West-Ward Pharmaceutical Corporation)
View all 14 references

Switch to consumer interaction data

Drug and food interactions

Moderate

imatinib food

Applies to: imatinib

GENERALLY AVOID: Coadministration of imatinib with strong CYP450 3A4 inhibitors such as grapefruit juice, may significantly increase the plasma concentrations of imatinib, a known substrate of CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of imatinib by certain compounds present in grapefruits. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict. In a single-dose study, coadministration of imatinib with ketoconazole (a strong CYP450 3A4 inhibitor) increased imatinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 26% and 40%, respectively.

MANAGEMENT: Patients treated with imatinib should preferably avoid the consumption of grapefruit or grapefruit juice. If coadministration is unavoidable, monitor for prolonged and/or increased pharmacologic effects of imatinib, including edema, hematologic toxicity and immunosuppression.

References

  1. (2022) "Product Information. Gleevec (imatinib)." Novartis Pharmaceuticals
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."

Switch to consumer interaction data

Moderate

codeine food

Applies to: ExeClear-C (codeine / guaifenesin)

GENERALLY AVOID: Ethanol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

MANAGEMENT: Concomitant use of opioid analgesics with ethanol should be avoided.

References

  1. Linnoila M, Hakkinen S (1974) "Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving." Clin Pharmacol Ther, 15, p. 368-73
  2. Sturner WQ, Garriott JC (1973) "Deaths involving propoxyphene: a study of 41 cases over a two-year period." JAMA, 223, p. 1125-30
  3. Girre C, Hirschhorn M, Bertaux L, et al. (1991) "Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers." Eur J Clin Pharmacol, 41, p. 147-52
  4. Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
  5. Sellers EM, Hamilton CA, Kaplan HL, Degani NC, Foltz RL (1985) "Pharmacokinetic interaction of propoxyphene with ethanol." Br J Clin Pharmacol, 19, p. 398-401
  6. Carson DJ (1977) "Fatal dextropropoxyphene poisoning in Northern Ireland. Review of 30 cases." Lancet, 1, p. 894-7
  7. Rosser WW (1980) "The interaction of propoxyphene with other drugs." Can Med Assoc J, 122, p. 149-50
  8. Edwards C, Gard PR, Handley SL, Hunter M, Whittington RM (1982) "Distalgesic and ethanol-impaired function." Lancet, 2, p. 384
  9. Kiplinger GF, Sokol G, Rodda BE (1974) "Effect of combined alcohol and propoxyphene on human performance." Arch Int Pharmacodyn Ther, 212, p. 175-80
View all 9 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.