Skip to main content

Drug Interactions between emtricitabine / lopinavir / ritonavir / tenofovir and Lexxel

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

felodipine ritonavir

Applies to: Lexxel (enalapril / felodipine) and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir may increase the plasma concentrations of drugs that are substrates of the CYP450 3A4 isoenzyme. The mechanism is decreased clearance due to inhibition of CYP450 3A4 activity by ritonavir. The area under the plasma concentration-time curve (AUC) of some coadministered drugs has been reported to increase by 3-fold or more.

MANAGEMENT: Caution is advised if ritonavir must be used concurrently with medications that undergo metabolism by CYP450 3A4, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever ritonavir is added to or withdrawn from therapy.

References

  1. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):
  2. "Product Information. Rapamune (sirolimus)." Wyeth-Ayerst Laboratories PROD (2001):
  3. Olkkola KT, Palkama VJ, Neuvonen PJ "Ritonavir's role in reducing fentanyl clearance and prolonging its half-life." Anesthesiology 91 (1999): 681-5

Switch to consumer interaction data

Moderate

felodipine lopinavir

Applies to: Lexxel (enalapril / felodipine) and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Lopinavir in combination with ritonavir has been shown to prolong the PR interval of the electrocardiogram in some patients. Theoretically, coadministration with other agents that prolong the PR interval (e.g., beta blockers, calcium channel blockers, atazanavir, digoxin, lacosamide, mefloquine) may result in additive effects and increased risk of conduction disturbances and atrioventricular block. In a study of 39 healthy adults who were administered lopinavir-ritonavir at a therapeutic dosage of 400 mg-100 mg twice daily and a supratherapeutic dosage of 800 mg-200 mg twice daily, mean changes from baseline in the PR interval ranged from 11.6 to 24.4 msec in the 12 hours postdose on treatment day 3 when exposures were approximately 1.5 and 3-fold higher, respectively, than those observed with recommended once-daily or twice-daily dosages of lopinavir-ritonavir at steady state. After baseline correction, the maximum mean difference from placebo in the PR interval was 24.9 msec for the lower dosage and 31.9 msec for the supratherapeutic dosage. Maximum PR interval observed was 286 msec, and no second- or third-degree heart block occurred. There have been postmarketing reports of asymptomatic prolongation of the PR interval in some patients receiving combination antiretroviral therapy containing lopinavir-ritonavir. Second- and third-degree atrioventricular block have occurred rarely in patients with underlying structural heart disease or preexisting conduction system abnormalities and in patients receiving lopinavir-ritonavir with other drugs known to prolong the PR interval.

MANAGEMENT: Caution is advised if lopinavir-ritonavir is used concomitantly with other agents that prolong the PR interval, particularly those that are metabolized by CYP450 3A4 (e.g., calcium channel blockers) because lopinavir-ritonavir is a potent inhibitor of the isoenzyme. The elderly as well as patients with underlying structural heart disease, preexisting conduction system abnormalities, ischemic heart disease, or cardiomyopathies may be at increased risk for developing cardiac conduction disturbances and atrioventricular block associated with the use of lopinavir-ritonavir. Patients should be advised to notify their physician if they experience dizziness, lightheadedness, fainting, or irregular heartbeat.

References

  1. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir and emtricitabine / lopinavir / ritonavir / tenofovir

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Minor

enalapril felodipine

Applies to: Lexxel (enalapril / felodipine) and Lexxel (enalapril / felodipine)

Calcium channel blockers and angiotensin converting enzyme (ACE) inhibitors may have additive hypotensive effects. While these drugs are often safely used together, careful monitoring of the systemic blood pressure is recommended during coadministration, especially during the first one to three weeks of therapy.

References

  1. Kaplan NM "Amlodipine in the treatment of hypertension." Postgrad Med J 67 Suppl 5 (1991): s15-9
  2. DeQuattro V "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol 14 (1991): iv28-32;
  3. Sun JX, Cipriano A, Chan K, John VA "Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects." Eur J Clin Pharmacol 47 (1994): 285-9
  4. Di Somma S, et al. "Antihypertensive effects of verapamil, captopril and their combination at rest and during dynamic exercise." Arzneimittelforschung 42 (1992): 103
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

enalapril food

Applies to: Lexxel (enalapril / felodipine)

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References

  1. "Product Information. Vasotec (enalapril)." Merck & Co., Inc PROD (2002):
  2. Good CB, McDermott L "Diet and serum potassium in patients on ACE inhibitors." JAMA 274 (1995): 538
  3. Ray K, Dorman S, Watson R "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens 13 (1999): 717-20

Switch to consumer interaction data

Moderate

felodipine food

Applies to: Lexxel (enalapril / felodipine)

GENERALLY AVOID: The consumption of grapefruit juice may be associated with significantly increased plasma concentrations of some calcium channel blockers (CCBs) when they are administered orally. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. The interaction has been reported with the dihydropyridine CCBs (in roughly decreasing order of magnitude) felodipine, nisoldipine, nifedipine, and nimodipine, often with a high degree of interindividual variability. Grapefruit juice caused more than twofold increases in felodipine, nifedipine, and nisoldipine AUCs.

MANAGEMENT: The manufacturers of nifedipine and nisoldipine recommend avoiding grapefruit juice. Patients treated orally with other calcium channel blockers should be advised to avoid consumption of large amounts of grapefruits and grapefruit juice to prevent any undue fluctuations in serum drug levels. Increased effects on blood pressure may persist for up to 4 days after the consumption of grapefruit juice. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.

References

  1. Edgar B, Bailey D, Bergstrand R, Johnsson G, Regardh CG "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics of felodipine--and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. "Product Information. Plendil (felodipine)." Merck & Co., Inc PROD (2002):
  3. "Product Information. Procardia (nifedipine)." Pfizer U.S. Pharmaceuticals PROD (2002):
  4. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  5. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. "Product Information. Sular (nisoldipine)." Astra-Zeneca Pharmaceuticals PROD (2001):
  10. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  11. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  12. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  13. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  14. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  15. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  16. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  17. Ho PC, Ghose K, Saville D, Wanwimolruk S "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol 56 (2000): 693-8
  18. Fuhr U, Muller-Peltzer H, Kern R, et al. "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol 58 (2002): 45-53
  19. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 19 references

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

enalapril food

Applies to: Lexxel (enalapril / felodipine)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

felodipine food

Applies to: Lexxel (enalapril / felodipine)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

felodipine food

Applies to: Lexxel (enalapril / felodipine)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med 3 (1985): 334-6
  2. Moller IW "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth 59 (1987): 522-6
  3. Oszko MA, Klutman NE "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm 6 (1987): 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol 67 (1991): 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy 10 (1990): 247
  6. Woie L, Storstein L "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J 2 (1981): 239-42
  7. Morris DL, Goldschlager N "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA 249 (1983): 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol 27 (1987): 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M "Calcium gluconate in severe verapamil intoxication." N Engl J Med 330 (1994): 718-20
  10. Bar-Or D, Gasiel Y "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed) 282 (1981): 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med 8 (1982): 55-7
  12. McMillan R "Management of acute severe verapamil intoxication." J Emerg Med 6 (1988): 193-6
  13. Perkins CM "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J 2 (1978): 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol 17 (1980): 395-400
View all 14 references

Switch to consumer interaction data

Minor

tenofovir food

Applies to: emtricitabine / lopinavir / ritonavir / tenofovir

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.