Skip to main content

Drug Interactions between duvelisib and Ionsys

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

fentaNYL duvelisib

Applies to: Ionsys (fentanyl) and duvelisib

MONITOR CLOSELY: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of fentanyl, which is primarily metabolized by the isoenzyme. Increased fentanyl concentrations could increase or prolong adverse drug effects and may cause potentially fatal respiratory depression. Conversely, discontinuation of a CYP450 3A4 inhibitor could decrease fentanyl plasma concentrations, decrease opioid efficacy, and possibly even lead to a withdrawal syndrome in patients who had developed physical dependence to fentanyl. In eleven healthy volunteers, coadministration of the potent inhibitor ritonavir (200 mg orally three times a day on day 1; 300 mg three times a day on day 2; one morning dose of 300 mg on day 3) and intravenous fentanyl (5 mcg/kg two hours after the afternoon dose of ritonavir on day 2) resulted in a 174% increase in fentanyl systemic exposure (AUC) and a 67% decrease in fentanyl clearance compared to administration of fentanyl alone (with placebo). No other formulations of fentanyl such as patches or buccal tablets were studied.

MANAGEMENT: Patients receiving fentanyl with potent or moderate CYP450 3A4 inhibitors should be carefully monitored, and dosage adjustments made accordingly as needed. This is particularly important when an inhibitor is added after a stable dose of fentanyl has been achieved. Some authorities recommend avoiding concomitant use of fentanyl during and for 2 weeks after treatment with itraconazole. Patients and/or their caregivers should be advised to seek medical attention if potential signs and symptoms of toxicity occur, such as dizziness, confusion, fainting, extreme sedation, unresponsiveness, bradycardia, slow or difficult breathing, and shortness of breath. When discontinuing CYP450 3A4 inhibitors, monitor patients closely at frequent intervals and consider increasing the opioid dosage if needed to maintain adequate analgesia or if symptoms of opioid withdrawal occur. Patients treated with transdermal formulations of fentanyl should be cautioned that drug interactions and drug effects may be observed for a prolonged period beyond removal of the patch, as significant amounts of fentanyl are absorbed from the skin for 17 hours or more after the patch is removed.

References

  1. (2002) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  2. "Product Information. Duragesic Transdermal System (fentanyl)." Janssen Pharmaceutica, Titusville, NJ.
  3. (2001) "Product Information. Actiq (fentanyl)." Abbott Pharmaceutical
  4. Ibrahim AE, Feldman J, Karim A, Kharasch ED (2003) "Simultaneous Assessment of Drug Interactions with Low- and High-Extraction Opioids: Application to Parecoxib Effects on the Pharmacokinetics and Pharmacodynamics of Fentanyl and Alfentanil." Anesthesiology, 98, p. 853-861
  5. Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M (1996) "Identification of human cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation." Anesth Analg, 82, p. 167-72
  6. Labroo RB, Paine MF, Thummel KE, Kharasch ED (1997) "Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implicaitons for interindividual variability in disposition, efficacy, and drug interactions." Drug Metab Dispos, 25, p. 1072-80
  7. Cerner Multum, Inc. "Australian Product Information."
View all 7 references

Switch to consumer interaction data

Drug and food interactions

Major

fentaNYL food

Applies to: Ionsys (fentanyl)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including fentanyl. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Consumption of grapefruit juice during treatment with oral transmucosal formulations of fentanyl may result in increased plasma concentrations of fentanyl, which is primarily metabolized by CYP450 3A4 isoenzyme in the liver and intestine. Certain compounds present in grapefruit are known to inhibit CYP450 3A4 and may increase the bioavailability of swallowed fentanyl (reportedly up to 75% of a dose) and/or decrease its systemic clearance. The clinical significance is unknown. In 12 healthy volunteers, consumption of 250 mL regular-strength grapefruit juice the night before and 100 mL double-strength grapefruit juice one hour before administration of oral transmucosal fentanyl citrate (600 or 800 mcg lozenge) did not significantly affect fentanyl pharmacokinetics, overall extent of fentanyl-induced miosis (miosis AUC), or subjective self-assessment of various clinical effects compared to control. However, pharmacokinetic alterations associated with interactions involving grapefruit juice are often subject to a high degree of interpatient variability. The possibility of significant interaction in some patients should be considered.

MANAGEMENT: Patients should not consume alcoholic beverages or use drug products that contain alcohol during treatment with fentanyl. Any history of alcohol or illicit drug use should be considered when prescribing fentanyl, and therapy initiated at a lower dosage if necessary. Patients should be closely monitored for signs and symptoms of sedation, respiratory depression, and hypotension. Due to a high degree of interpatient variability with respect to grapefruit juice interactions, patients treated with fentanyl should preferably avoid the consumption of grapefruit and grapefruit juice. In addition, patients receiving transdermal formulations of fentanyl should be cautioned that drug interactions and drug effects may be observed for a prolonged period beyond removal of the patch, as significant amounts of fentanyl are absorbed from the skin for 17 hours or more after the patch is removed.

References

  1. "Product Information. Duragesic Transdermal System (fentanyl)." Janssen Pharmaceutica, Titusville, NJ.
  2. (2001) "Product Information. Actiq (fentanyl)." Abbott Pharmaceutical
  3. Kharasch ED, Whittington D, Hoffer C (2004) "Influence of Hepatic and Intestinal Cytochrome P4503A Activity on the Acute Disposition and Effects of Oral Transmucosal Fentanyl Citrate." Anesthesiology, 101, p. 729-737
  4. Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M (1996) "Identification of human cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation." Anesth Analg, 82, p. 167-72
  5. Labroo RB, Paine MF, Thummel KE, Kharasch ED (1997) "Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implicaitons for interindividual variability in disposition, efficacy, and drug interactions." Drug Metab Dispos, 25, p. 1072-80
View all 5 references

Switch to consumer interaction data

Moderate

duvelisib food

Applies to: duvelisib

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.