Skip to main content

Drug Interactions between dextromethorphan / promethazine and Maxaquin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

lomefloxacin promethazine

Applies to: Maxaquin (lomefloxacin) and dextromethorphan / promethazine

MONITOR: Theoretically, concurrent use of two or more drugs that can cause QT interval prolongation may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. The risk of an individual agent or a combination of these agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Caution and clinical monitoring are recommended if multiple agents associated with QT interval prolongation are prescribed together. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. Glassman AH, Bigger JT Jr (2001) "Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death." Am J Psychiatry, 158, p. 1774-82
  2. Witchel HJ, Hancox JC, Nutt DJ (2003) "Psychotropic drugs, cardiac arrhythmia, and sudden death." J Clin Psychopharmacol, 23, p. 58-77
  3. Iannini PB (2002) "Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval." Expert Opin Drug Saf, 1, p. 121-8
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  6. Cerner Multum, Inc. "Australian Product Information."
  7. EMA. European Medicines Agency. European Union (2013) EMA - List of medicines under additional monitoring. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000366.jsp&mid=WC0b01ac058067c852
View all 7 references

Switch to consumer interaction data

Moderate

dextromethorphan promethazine

Applies to: dextromethorphan / promethazine and dextromethorphan / promethazine

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Drug and food interactions

Moderate

dextromethorphan food

Applies to: dextromethorphan / promethazine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

promethazine food

Applies to: dextromethorphan / promethazine

GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.

MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.

References

  1. Lutz EG (1976) "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA, 236, p. 2422-3
  2. Freed E (1981) "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust, 2, p. 44-5

Switch to consumer interaction data

Moderate

lomefloxacin food

Applies to: Maxaquin (lomefloxacin)

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of quinolone antibiotics. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of quinolones by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract. The bioavailability of ciprofloxacin has been reported to decrease by as much as 90% when administered with antacids containing aluminum or magnesium hydroxide.

MANAGEMENT: When coadministration cannot be avoided, quinolone antibiotics should be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation-containing products to minimize the potential for interaction. When coadministered with Suprep Bowel Prep (magnesium/potassium/sodium sulfates), the manufacturer recommends administering fluoroquinolone antibiotics at least 2 hours before and not less than 6 hours after Suprep Bowel Prep to avoid chelation with magnesium. Please consult individual product labeling for specific recommendations.

References

  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
  5. Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
  6. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
  7. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
  8. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
  9. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
  10. Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
  11. Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
  12. Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
  13. Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
  14. Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
  15. Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
  16. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
  17. Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
  18. Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
  19. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  20. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  21. (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
  22. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  23. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
  24. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
  25. Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
  26. Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
  27. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
  28. Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
  29. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
  30. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  31. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
  32. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
View all 32 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.