Skip to main content

Drug Interactions between Cymbalta and Painaid

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

aspirin salicylamide

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide) and Painaid (acetaminophen / aspirin / caffeine / salicylamide)

MONITOR: The combined use of low-dose or high-dose aspirin with other nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the potential for serious gastrointestinal (GI) toxicity, including inflammation, bleeding, ulceration, and perforation. Aspirin at anti-inflammatory dosages or higher may also decrease the plasma concentrations of many NSAIDs. The decreases have ranged from none or small (piroxicam, meloxicam, naproxen, tolmetin) to substantial (flurbiprofen, ibuprofen). However, the therapeutic response does not appear to be affected. Investigators theorize that aspirin may displace NSAIDs from plasma protein binding sites, resulting in increased concentration of unbound, or free, drug available for clearance. The increase in NSAID free fraction, and possibly some contributory anti-inflammatory effect from aspirin, may account for the lack of overall effect on therapeutic response.

MANAGEMENT: Caution is advised if aspirin, particularly at anti-inflammatory dosages, is used with other NSAIDs. Concomitant administration of NSAIDs is considered contraindicated or not recommended with aspirin at analgesic/anti-inflammatory dosages by many NSAID manufacturers. During concomitant therapy, patients should be advised to take the medications with food and to immediately report signs and symptoms of GI ulceration and bleeding such as abdominal pain, bloating, sudden dizziness or lightheadedness, nausea, vomiting, hematemesis, anorexia, and melena.

References

  1. Furst DE, Sarkissian E, Blocka K, et al. (1987) "Serum concentrations of salicylate and naproxen during concurrent therapy in patients with rheumatoid arthritis." Arthritis Rheum, 30, p. 1157-61
  2. Abdel-Rahman MS, Reddi AS, Curro FA, Turkall RM, Kadry AM, Hansrote JA (1991) "Bioavailability of aspirin and salicylamide following oral co-administration in human volunteers." Can J Physiol Pharmacol, 69, p. 1436-42
  3. Gruber CM (1976) "Clinical pharmacology of fenoprofen: a review." J Rheumatol, 2, p. 8-17
  4. Cressman WA, Wortham GF, Plostnieks J (1976) "Absorption and excretion of tolemetin in man." Clin Pharmacol Ther, 19, p. 224-33
  5. Kwan KC, Breault GO, Davis RL, et al. (1978) "Effects of concomitant aspirin administration on the pharmacokinetics of indomethacin in man." J Pharmacokinet Biopharm, 6, p. 451-76
  6. Rubin A, Rodda BE, Warrick P, Gruber CM Jr, Ridolfo RS (1973) "Interactions of aspirin with nonsteroidal antiinflammatory drugs in man." Arthritis Rheum, 16, p. 635-45
  7. Brooks PM, Walker JJ, Bell MA, Buchanan WW, Rhymer AR (1975) "Indomethacin--aspirin interaction: a clinical appraisal." Br Med J, 3, p. 69-11
  8. Tempero KF, Cirillo VJ, Steelman SL (1977) "Diflunisal: a review of pharmacokinetic and pharmacodynamic properties, drug interactions, and special tolerability studies in humans." Br J Clin Pharmacol, 4, s31-6
  9. Willis JV, Kendall MJ, Jack DB (1980) "A study of the effect of aspirin on the pharmacokinetics of oral and intravenous diclofenac sodium." Eur J Clin Pharmacol, 18, p. 415-8
  10. Muller FO, Hundt HK, Muller DG (1977) "Pharmacokinetic and pharmacodynamic implications of long-term administration of non-steroidal anti-inflammatory agents." Int J Clin Pharmacol Biopharm, 15, p. 397-402
  11. Hobbs DC, Twomey TM (1979) "Piroxicam pharmacokinetics in man: aspirin and antacid interaction studies." J Clin Pharmacol, 19, p. 270-81
  12. Pawlotsky Y, Chales G, Grosbois B, Miane B, Bourel M (1978) "Comparative interaction of aspirin with indomethacin and sulindac in chronic rheumatic diseases." Eur J Rheumatol Inflamm, 1, p. 18-20
  13. Segre EJ, Chaplin M, Forchielli E, Runkel R, Sevelius H (1973) "Naproxen-aspirin interactions in man." Clin Pharmacol Ther, 15, p. 374-9
  14. Bird HA, Hill J, Leatham P, Wright V (1986) "A study to determine the clinical relevance of the pharmacokinetic interaction between aspirin and diclofenac." Agents Actions, 18, p. 447-9
  15. Brooks PM, Khong T (1977) "Flurbiprofen-aspirin interaction: a double-blind crossover study." Curr Med Res Opin, 5, p. 53-7
  16. Grennan DM, Ferry DG, Ashworth ME, Kenny RE, Mackinnnon M (1979) "The aspirin-ibuprofen interaction in rheumatoid arthritis." Br J Clin Pharmacol, 8, p. 497-503
  17. Williams RL, Upton RA, Buskin JN, Jones RM (1981) "Ketoprofen-aspirin interactions." Clin Pharmacol Ther, 30, p. 226-31
  18. Kaiser DG, Brooks CD, Lomen PL (1986) "Pharmacokinetics of flurbiprofen." Am J Med, 80, p. 10-5
  19. Kahn SB, Hubsher JA (1983) "Effects of oxaprozin alone or in combination with aspirin on hemostasis and plasma protein binding." J Clin Pharmacol, 23, p. 139-46
  20. (2001) "Product Information. Mobic (meloxicam)." Boehringer-Ingelheim
  21. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  22. Cerner Multum, Inc. "Australian Product Information."
View all 22 references

Switch to consumer interaction data

Moderate

aspirin DULoxetine

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide) and Cymbalta (duloxetine)

MONITOR: Serotonin reuptake inhibitors (SRIs) may potentiate the risk of bleeding in patients treated with ulcerogenic agents and agents that affect hemostasis such as anticoagulants, platelet inhibitors, thrombin inhibitors, thrombolytic agents, or agents that commonly cause thrombocytopenia. The tricyclic antidepressant, clomipramine, is also a strong SRI and may interact similarly. Serotonin release by platelets plays an important role in hemostasis, thus SRIs may alter platelet function and induce bleeding. Published case reports have documented the occurrence of bleeding episodes in patients treated with psychotropic agents that interfere with serotonin reuptake. Bleeding events related to SRIs have ranged from ecchymosis, hematoma, epistaxis, and petechiae to life-threatening hemorrhages. Additional epidemiological studies have confirmed the association between use of these agents and the occurrence of upper gastrointestinal bleeding, and concurrent use of NSAIDs or aspirin was found to potentiate the risk. Preliminary data also suggest that there may be a pharmacodynamic interaction between SSRIs and oral anticoagulants that can cause an increased bleeding diathesis. Concomitant administration of paroxetine and warfarin, specifically, has been associated with an increased frequency of bleeding without apparent changes in the disposition of either drug or changes in the prothrombin time. Bleeding has also been reported with fluoxetine and warfarin, while citalopram and sertraline have been reported to prolong the prothrombin time of patients taking warfarin by about 5% to 8%. In the RE-LY study (Randomized Evaluation of Long-term anticoagulant therapy), SRIs were associated with an increased risk of bleeding in all treatment groups.

MANAGEMENT: Caution is advised if SRIs or clomipramine are used in combination with other drugs that affect hemostasis. Close clinical and laboratory observation for hematologic complications is recommended. Patients should be advised to promptly report any signs of bleeding to their physician, including pain, swelling, headache, dizziness, weakness, prolonged bleeding from cuts, increased menstrual flow, vaginal bleeding, nosebleeds, bleeding of gums from brushing, unusual bleeding or bruising, red or brown urine, or red or black stools.

References

  1. Aranth J, Lindberg C (1992) "Bleeding, a side effect of fluoxetine." Am J Psychiatry, 149, p. 412
  2. Claire RJ, Servis ME, Cram DL Jr (1991) "Potential interaction between warfarin sodium and fluoxetine." Am J Psychiatry, 148, p. 1604
  3. Yaryura-Tobias JA, Kirschen H, Ninan P, Mosberg HJ (1991) "Fluoxetine and bleeding in obsessive-compulsive disorder." Am J Psychiatry, 148, p. 949
  4. Humphries JE, Wheby MS, VandenBerg SR (1990) "Fluoxetine and the bleeding time." Arch Pathol Lab Med, 114, p. 727-8
  5. Alderman CP, Moritz CK, Ben-Tovim DI (1992) "Abnormal platelet aggregation associated with fluoxetine therapy." Ann Pharmacother, 26, p. 1517-9
  6. Ciraulo DA, Shader RI (1990) "Fluoxetine drug-drug interactions. II." J Clin Psychopharmacol, 10, p. 213-7
  7. (2001) "Product Information. Zoloft (sertraline)." Roerig Division
  8. Woolfrey S, Gammack NS, Dewar MS, Brown PJ (1993) "Fluoxetine-warfarin interaction." BMJ, 307, p. 241
  9. (2001) "Product Information. Prozac (fluoxetine)." Dista Products Company
  10. (2001) "Product Information. Effexor (venlafaxine)." Wyeth-Ayerst Laboratories
  11. Bannister SJ, Houser VP, Hulse JD, Kisicki JC, Rasmussen JG (1989) "Evaluation of the potential for interactions of paroxetine with diazepam, cimetidine, warfarin, and digoxin." Acta Psychiatr Scand Suppl, 350, p. 102-6
  12. (2001) "Product Information. Paxil (paroxetine)." GlaxoSmithKline
  13. Messiha FS (1993) "Fluoxetine - adverse effects and drug-drug interactions." J Toxicol Clin Toxicol, 31, p. 603-30
  14. Ottervanger JP, Stricker BH, Huls J, Weeda JN (1994) "Bleeding attributed to the intake of paroxetine." Am J Psychiatry, 151, p. 781-2
  15. (2001) "Product Information. Luvox (fluvoxamine)." Solvay Pharmaceuticals Inc
  16. Krivy J, Wiener J (1995) "Sertraline and platelet counts in idiopathic thrombocytopenia purpura." Lancet, 345, p. 132
  17. Skop BP, Brown TM (1996) "Potential vascular and bleeding complications of treatment with selective serotonin reuptake inhibitors." Psychosomatics, 37, p. 12-6
  18. Pai VB, Kelly MW (1996) "Bruising associated with the use of fluoxetine." Ann Pharmacother, 30, p. 786-8
  19. Alderman CP, Seshadri P, Ben-Tovim DI (1996) "Effects of serotonin reuptake inhibitors on hemostasis." Ann Pharmacother, 30, p. 1232-4
  20. Leung M, Shore R (1996) "Fluvoxamine-associated bleeding." Can J Psychiatry, 41, p. 604-5
  21. Dent LA, Orrock MW (1997) "Warfarin-fluoxetine and diazepam-fluoxetine interaction." Pharmacotherapy, 17, p. 170-2
  22. Ford MA, Anderson ML, Rindone JP, Jaskar DW (1997) "Lack of effect of fluoxetine on the hypoprothrombinemic response of warfarin." J Clin Psychopharmacol, 17, p. 110-2
  23. (2001) "Product Information. Celexa (citalopram)." Forest Pharmaceuticals
  24. de Abajo FJ, Rodriguez LA, Montero D (1999) "Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study." BMJ, 319, p. 1106-9
  25. de Abajo FJ, Jick H, Derby L, Jick S, Schmitz S (2000) "Intracranial haemorrhage and use of selective serotonin reuptake inhibitors." Br J Clin Pharmacol, 50, p. 43-7
  26. Settle EC (1998) "Antidepressant drugs: disturbing and potentially dangerous adverse effects." J Clin Psychiatry, 59 Suppl 16, p. 25-30
  27. Hergovich N, Aigner M, Eichler HG, Entlicher J, Drucker C, Jilma B (2000) "Paroxetine decreases platelet serotonin storage and platelet function in human beings." Clin Pharmacol Ther, 68, p. 435-42
  28. Layton D, Clark DWJ, Pearce GL, Shakir SAW (2001) "Is there an association between selective serotonin reuptake inhibitors and risk of abnormal bleeding? Results from a cohort study based on prescription event monitoring in England." Eur J Clin Pharmacol, 57, p. 167-76
  29. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  30. de Maistre E, Allart C, Lecompte T, Bollaert PE (2002) "Severe bleeding associated with use of low molecular weight heparin and selective serotonin reuptake inhibitors." Am J Med, 113, p. 530-2
  31. Dalton SO, Johansen C, Mellemkjaer L, Norgard B, Sorensen HT, Olsen JH (2003) "Use of selective serotonin reuptake inhibitors and risk of upper gastrointestinal tract bleeding: a population-based cohort study." Arch Intern Med, 163, p. 59-64
  32. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  33. Tata LJ, Fortun PJ, Hubbard RB, et al. (2005) "Does concurrent prescription of selective serotonin reuptake inhibitors and non-steroidal anti-inflammatory drugs substantially increase the risk of upper gastrointestinal bleeding?" Aliment Pharmacol Ther, 22, p. 175-81
  34. Cerner Multum, Inc. "Australian Product Information."
  35. (2008) "Product Information. Pristiq (desvenlafaxine)." Wyeth Laboratories
  36. (2009) "Product Information. Savella (milnacipran)." Forest Pharmaceuticals
  37. (2011) "Product Information. Viibryd (vilazodone)." Trovis Pharmaceuticals LLC
  38. (2013) "Product Information. Fetzima (levomilnacipran)." Forest Pharmaceuticals
  39. (2013) "Product Information. Brintellix (vortioxetine)." Takeda Pharmaceuticals America
View all 39 references

Switch to consumer interaction data

Moderate

caffeine DULoxetine

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide) and Cymbalta (duloxetine)

MONITOR: Coadministration with inhibitors of CYP450 1A2 may increase the plasma concentrations of duloxetine, which is a substrate of the isoenzyme. In 14 male study subjects, coadministration with 100 mg fluvoxamine, a potent CYP450 1A2 inhibitor, resulted in a 2.5-fold increase in duloxetine peak plasma concentration (Cmax), a nearly 6-fold increase in duloxetine systemic exposure (AUC), and an approximately 3-fold increase in duloxetine half-life. The interaction has not been studied with less potent CYP450 1A2 inhibitors such as mexiletine, propafenone, and zileuton. Theoretically, high plasma levels of duloxetine may increase the risk of serious adverse effects such as hypertension, hypertensive crisis, increased heart rate, orthostatic hypotension, syncope, and serotonin syndrome. Serotonin syndrome is a rare but serious and potentially fatal condition thought to result from hyperstimulation of brainstem 5-HT1A and 2A receptors. Symptoms may include mental status changes such as irritability, altered consciousness, confusion, hallucinations, and coma; autonomic dysfunction such as tachycardia, hyperthermia, diaphoresis, shivering, blood pressure lability, and mydriasis; neuromuscular abnormalities such as hyperreflexia, myoclonus, tremor, and ataxia; and gastrointestinal symptoms such as abdominal cramping, nausea, vomiting, and diarrhea.

MANAGEMENT: Caution is advised if duloxetine is used in combination with CYP450 1A2 inhibitors. Pharmacologic response to duloxetine should be monitored more closely whenever a CYP450 1A2 inhibitor is added to or withdrawn from therapy, and the dosage adjusted as necessary.

References

  1. Brosen K, Skjelbo E, Rasmussen BB, Poulsen HE, Loft S (1993) "Fluvoxamine is a potent inhibitor of cytochrome P4501A2." Biochem Pharmacol, 45, p. 1211-4
  2. Martinez C, Albet C, Agundez JA, et al. (1999) "Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists." Clin Pharmacol Ther, 65, p. 369-76
  3. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  4. Uwe F, Strobl G, Manaut F, et al. (1993) "Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isofaorm CYP1A2." Mol Pharmacol, 43, p. 191-9
View all 4 references

Switch to consumer interaction data

Moderate

salicylamide DULoxetine

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide) and Cymbalta (duloxetine)

MONITOR: Serotonin reuptake inhibitors (SRIs) may potentiate the risk of bleeding in patients treated with ulcerogenic agents and agents that affect hemostasis such as anticoagulants, platelet inhibitors, thrombin inhibitors, thrombolytic agents, or agents that commonly cause thrombocytopenia. The tricyclic antidepressant, clomipramine, is also a strong SRI and may interact similarly. Serotonin release by platelets plays an important role in hemostasis, thus SRIs may alter platelet function and induce bleeding. Published case reports have documented the occurrence of bleeding episodes in patients treated with psychotropic agents that interfere with serotonin reuptake. Bleeding events related to SRIs have ranged from ecchymosis, hematoma, epistaxis, and petechiae to life-threatening hemorrhages. Additional epidemiological studies have confirmed the association between use of these agents and the occurrence of upper gastrointestinal bleeding, and concurrent use of NSAIDs or aspirin was found to potentiate the risk. Preliminary data also suggest that there may be a pharmacodynamic interaction between SSRIs and oral anticoagulants that can cause an increased bleeding diathesis. Concomitant administration of paroxetine and warfarin, specifically, has been associated with an increased frequency of bleeding without apparent changes in the disposition of either drug or changes in the prothrombin time. Bleeding has also been reported with fluoxetine and warfarin, while citalopram and sertraline have been reported to prolong the prothrombin time of patients taking warfarin by about 5% to 8%. In the RE-LY study (Randomized Evaluation of Long-term anticoagulant therapy), SRIs were associated with an increased risk of bleeding in all treatment groups.

MANAGEMENT: Caution is advised if SRIs or clomipramine are used in combination with other drugs that affect hemostasis. Close clinical and laboratory observation for hematologic complications is recommended. Patients should be advised to promptly report any signs of bleeding to their physician, including pain, swelling, headache, dizziness, weakness, prolonged bleeding from cuts, increased menstrual flow, vaginal bleeding, nosebleeds, bleeding of gums from brushing, unusual bleeding or bruising, red or brown urine, or red or black stools.

References

  1. Aranth J, Lindberg C (1992) "Bleeding, a side effect of fluoxetine." Am J Psychiatry, 149, p. 412
  2. Claire RJ, Servis ME, Cram DL Jr (1991) "Potential interaction between warfarin sodium and fluoxetine." Am J Psychiatry, 148, p. 1604
  3. Yaryura-Tobias JA, Kirschen H, Ninan P, Mosberg HJ (1991) "Fluoxetine and bleeding in obsessive-compulsive disorder." Am J Psychiatry, 148, p. 949
  4. Humphries JE, Wheby MS, VandenBerg SR (1990) "Fluoxetine and the bleeding time." Arch Pathol Lab Med, 114, p. 727-8
  5. Alderman CP, Moritz CK, Ben-Tovim DI (1992) "Abnormal platelet aggregation associated with fluoxetine therapy." Ann Pharmacother, 26, p. 1517-9
  6. Ciraulo DA, Shader RI (1990) "Fluoxetine drug-drug interactions. II." J Clin Psychopharmacol, 10, p. 213-7
  7. (2001) "Product Information. Zoloft (sertraline)." Roerig Division
  8. Woolfrey S, Gammack NS, Dewar MS, Brown PJ (1993) "Fluoxetine-warfarin interaction." BMJ, 307, p. 241
  9. (2001) "Product Information. Prozac (fluoxetine)." Dista Products Company
  10. (2001) "Product Information. Effexor (venlafaxine)." Wyeth-Ayerst Laboratories
  11. Bannister SJ, Houser VP, Hulse JD, Kisicki JC, Rasmussen JG (1989) "Evaluation of the potential for interactions of paroxetine with diazepam, cimetidine, warfarin, and digoxin." Acta Psychiatr Scand Suppl, 350, p. 102-6
  12. (2001) "Product Information. Paxil (paroxetine)." GlaxoSmithKline
  13. Messiha FS (1993) "Fluoxetine - adverse effects and drug-drug interactions." J Toxicol Clin Toxicol, 31, p. 603-30
  14. Ottervanger JP, Stricker BH, Huls J, Weeda JN (1994) "Bleeding attributed to the intake of paroxetine." Am J Psychiatry, 151, p. 781-2
  15. (2001) "Product Information. Luvox (fluvoxamine)." Solvay Pharmaceuticals Inc
  16. Krivy J, Wiener J (1995) "Sertraline and platelet counts in idiopathic thrombocytopenia purpura." Lancet, 345, p. 132
  17. Skop BP, Brown TM (1996) "Potential vascular and bleeding complications of treatment with selective serotonin reuptake inhibitors." Psychosomatics, 37, p. 12-6
  18. Pai VB, Kelly MW (1996) "Bruising associated with the use of fluoxetine." Ann Pharmacother, 30, p. 786-8
  19. Alderman CP, Seshadri P, Ben-Tovim DI (1996) "Effects of serotonin reuptake inhibitors on hemostasis." Ann Pharmacother, 30, p. 1232-4
  20. Leung M, Shore R (1996) "Fluvoxamine-associated bleeding." Can J Psychiatry, 41, p. 604-5
  21. Dent LA, Orrock MW (1997) "Warfarin-fluoxetine and diazepam-fluoxetine interaction." Pharmacotherapy, 17, p. 170-2
  22. Ford MA, Anderson ML, Rindone JP, Jaskar DW (1997) "Lack of effect of fluoxetine on the hypoprothrombinemic response of warfarin." J Clin Psychopharmacol, 17, p. 110-2
  23. (2001) "Product Information. Celexa (citalopram)." Forest Pharmaceuticals
  24. de Abajo FJ, Rodriguez LA, Montero D (1999) "Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study." BMJ, 319, p. 1106-9
  25. de Abajo FJ, Jick H, Derby L, Jick S, Schmitz S (2000) "Intracranial haemorrhage and use of selective serotonin reuptake inhibitors." Br J Clin Pharmacol, 50, p. 43-7
  26. Settle EC (1998) "Antidepressant drugs: disturbing and potentially dangerous adverse effects." J Clin Psychiatry, 59 Suppl 16, p. 25-30
  27. Hergovich N, Aigner M, Eichler HG, Entlicher J, Drucker C, Jilma B (2000) "Paroxetine decreases platelet serotonin storage and platelet function in human beings." Clin Pharmacol Ther, 68, p. 435-42
  28. Layton D, Clark DWJ, Pearce GL, Shakir SAW (2001) "Is there an association between selective serotonin reuptake inhibitors and risk of abnormal bleeding? Results from a cohort study based on prescription event monitoring in England." Eur J Clin Pharmacol, 57, p. 167-76
  29. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  30. de Maistre E, Allart C, Lecompte T, Bollaert PE (2002) "Severe bleeding associated with use of low molecular weight heparin and selective serotonin reuptake inhibitors." Am J Med, 113, p. 530-2
  31. Dalton SO, Johansen C, Mellemkjaer L, Norgard B, Sorensen HT, Olsen JH (2003) "Use of selective serotonin reuptake inhibitors and risk of upper gastrointestinal tract bleeding: a population-based cohort study." Arch Intern Med, 163, p. 59-64
  32. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  33. Tata LJ, Fortun PJ, Hubbard RB, et al. (2005) "Does concurrent prescription of selective serotonin reuptake inhibitors and non-steroidal anti-inflammatory drugs substantially increase the risk of upper gastrointestinal bleeding?" Aliment Pharmacol Ther, 22, p. 175-81
  34. Cerner Multum, Inc. "Australian Product Information."
  35. (2008) "Product Information. Pristiq (desvenlafaxine)." Wyeth Laboratories
  36. (2009) "Product Information. Savella (milnacipran)." Forest Pharmaceuticals
  37. (2011) "Product Information. Viibryd (vilazodone)." Trovis Pharmaceuticals LLC
  38. (2013) "Product Information. Fetzima (levomilnacipran)." Forest Pharmaceuticals
  39. (2013) "Product Information. Brintellix (vortioxetine)." Takeda Pharmaceuticals America
View all 39 references

Switch to consumer interaction data

Minor

aspirin caffeine

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide) and Painaid (acetaminophen / aspirin / caffeine / salicylamide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
  4. Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
  6. Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
  7. Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
  8. (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
  9. Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
  10. Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  11. Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  12. Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
View all 12 references

Switch to consumer interaction data

Moderate

DULoxetine food

Applies to: Cymbalta (duloxetine)

GENERALLY AVOID: Use of duloxetine in conjunction with chronic alcohol consumption may potentiate the risk of liver injury. Duloxetine alone can increase serum transaminase levels. In clinical trials, 0.3% of patients discontinued duloxetine due to liver transaminase elevations. The median time to detection was about two months. Three duloxetine-treated patients had liver injury as manifested by transaminase and bilirubin elevations, with evidence of obstruction. Substantial intercurrent ethanol use was present in each of these cases, which may have contributed to the abnormalities observed. Duloxetine does not appear to enhance the central nervous system effects of alcohol. When duloxetine and ethanol were administered several hours apart so that peak concentrations of each would coincide, duloxetine did not increase the impairment of mental and motor skills caused by alcohol.

MANAGEMENT: Due to the risk of liver injury, patients prescribed duloxetine should be counseled to avoid excessive use of alcohol. Duloxetine should generally not be prescribed to patients with substantial alcohol use.

References

  1. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company

Switch to consumer interaction data

Moderate

aspirin food

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Moderate

salicylamide food

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Minor

caffeine food

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide)

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52

Switch to consumer interaction data

Minor

aspirin food

Applies to: Painaid (acetaminophen / aspirin / caffeine / salicylamide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.