Skip to main content

Drug Interactions between ChlorDex GP and fedratinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

chlorpheniramine dextromethorphan

Applies to: ChlorDex GP (chlorpheniramine / dextromethorphan / guaifenesin / phenylephrine) and ChlorDex GP (chlorpheniramine / dextromethorphan / guaifenesin / phenylephrine)

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

chlorpheniramine fedratinib

Applies to: ChlorDex GP (chlorpheniramine / dextromethorphan / guaifenesin / phenylephrine) and fedratinib

MONITOR: Coadministration with fedratinib may increase the plasma concentrations of drugs that are substrates of the CYP450 3A4, 2C19, and/or 2D6 isoenzymes. Coadministration of fedratinib with a single dose each of the CYP450 3A4 substrate midazolam (2 mg), CYP450 2C19 substrate omeprazole (20 mg), and CYP450 2D6 substrate metoprolol (100 mg) increased the systemic exposure (AUC) of the substrates by 4-, 3-, and 2-fold, respectively.

MANAGEMENT: Caution is recommended when fedratinib is used concomitantly with substrates of CYP450 3A4, 2C19, and/or 2D6. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever fedratinib is added to or withdrawn from therapy, particularly those with a narrow therapeutic index.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2019) "Product Information. Inrebic (fedratinib)." Celgene Corporation

Switch to consumer interaction data

Moderate

dextromethorphan fedratinib

Applies to: ChlorDex GP (chlorpheniramine / dextromethorphan / guaifenesin / phenylephrine) and fedratinib

MONITOR: Coadministration with CYP450 2D6 inhibitors may increase the plasma concentrations of dextromethorphan in patients who are extensive metabolizers of this isoenzyme (approximately 93% of Caucasians and more than 98% of Asians and individuals of African descent). The proposed mechanism is inhibition of the CYP450 2D6-mediated O-demethylation of dextromethorphan. Increased plasma concentrations increase the risk of dextromethorphan-related adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome. Coadministration of dextromethorphan (60 mg orally, once) with the CYP450 2D6 inhibitor panobinostat (20 mg orally once a day on days 3, 5, and 8) in 14 patients with advanced cancer had a highly variable effect on dextromethorphan levels, increasing the peak plasma concentration (Cmax) of dextromethorphan by 20% to 200%, and total systemic exposure (AUC 0 to infinity) by 20% to 130%, compared to dextromethorphan given alone. In addition, multiple doses of the potent CYP450 2D6 inhibitor cinacalcet (50 mg daily), increased the AUC of a single 30 mg dextromethorphan dose by 11-fold in extensive metabolizers of this isoenzyme. The moderate CYP450 2D6 inhibitor asunaprevir, given at 200 mg twice daily, also increased Cmax and AUC of a single 30 mg dose of dextromethorphan by 2.7- and 3.9-fold, respectively, in 17 study subjects.

MANAGEMENT: Caution should be exercised if these drugs must be used together. Patients should be monitored for signs of dextromethorphan adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome, and advised to notify their health care professional if these adverse effects develop or worsen. Dose reduction of dextromethorphan may also be required.

References

  1. Funck-Brentano C, Jacqz-Aigrain E, Leenhardt A, Roux A, Poirier JM, Jaillon P (1991) "Influence of amiodarone on genetically determined drug metabolism in humans." Clin Pharmacol Ther, 50, p. 259-66
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."
  4. (2011) "Product Information. Zytiga (abiraterone)." Centocor Inc
  5. (2015) "Product Information. Farydak (panobinostat)." Novartis Pharmaceuticals
  6. (2021) "Product Information. Qelbree (viloxazine)." Supernus Pharmaceuticals Inc
View all 6 references

Switch to consumer interaction data

Drug and food interactions

Moderate

chlorpheniramine food

Applies to: ChlorDex GP (chlorpheniramine / dextromethorphan / guaifenesin / phenylephrine)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

dextromethorphan food

Applies to: ChlorDex GP (chlorpheniramine / dextromethorphan / guaifenesin / phenylephrine)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

fedratinib food

Applies to: fedratinib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of fedratinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. When a single 300 mg oral dose of fedratinib (0.75 times the recommended dose) was coadministered with 200 mg twice daily ketoconazole, a potent CYP450 3A4 inhibitor, fedratinib total systemic exposure (AUC(inf)) increased by approximately 3-fold. Using physiologically based pharmacokinetic (PBPK) simulations, coadministration of fedratinib 400 mg once daily and ketoconazole 400 mg once daily is predicted to increase fedratinib AUC at steady state by 2-fold. Coadministration with the moderate CYP450 3A4 inhibitors, erythromycin (500 mg three times daily) or diltiazem (120 mg twice daily), is predicted to increase fedratinib AUC by approximately 1.5- to 2-fold following single-dose administration and by approximately 1.2-fold at steady state. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased fedratinib exposure may potentiate the risk of adverse reactions such as nausea, vomiting, diarrhea, anemia, thrombocytopenia, neutropenia, encephalopathy (including Wernicke's), liver (ALT, AST) and pancreatic (amylase, lipase) enzyme elevations, increased blood creatinine, and secondary malignancies.

Food does not affect the oral bioavailability of fedratinib to a clinically significant extent. Administration of a single 500 mg dose (1.25 times the recommended dose) with a low-fat, low-calorie meal (162 calories; 6% from fat, 78% from carbohydrate, 16% from protein) or a high-fat, high-calorie meal (815 calories; 52% from fat, 33% from carbohydrate, 15% from protein) increased fedratinib peak plasma concentration (Cmax) and systemic exposure (AUC) by up to 14% and 24%, respectively.

MANAGEMENT: Fedratinib may be taken with or without food. However, administration with a high-fat meal may help reduce the incidence of nausea and vomiting. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with fedratinib.

References

  1. Wu F, Krishna G, Surapaneni S (2020) "Physiologically based pharmacokinetic modeling to assess metabolic drug-drug interaction risks and inform the drug label for fedratinib." Cancer Chemother Pharmacol, 86, p. 461-73
  2. (2022) "Product Information. Inrebic (fedratinib)." Bristol-Myers Squibb
  3. (2021) "Product Information. Inrebic (fedratinib)." Bristol-Myers Squibb Pharmaceuticals Ltd

Switch to consumer interaction data

Moderate

phenylephrine food

Applies to: ChlorDex GP (chlorpheniramine / dextromethorphan / guaifenesin / phenylephrine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.