Skip to main content

Drug Interactions between Carbex and dextromethorphan / promethazine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

dextromethorphan selegiline

Applies to: dextromethorphan / promethazine and Carbex (selegiline)

CONTRAINDICATED: By inhibiting serotonin metabolism, monoamine oxidase inhibitors (MAOIs) may potentiate the pharmacologic activity of serotonergic agents such as serotonin reuptake inhibitors, 5-HT1 receptor agonists, ergot alkaloids, buspirone, dextromethorphan, and most antidepressants. The result may be an increased risk of serotonin syndrome, which is a rare but serious and potentially fatal condition thought to result from hyperstimulation of brainstem 5-HT1A and 2A receptors. Symptoms of the serotonin syndrome may include mental status changes such as irritability, altered consciousness, confusion, hallucinations, and coma; autonomic dysfunction such as tachycardia, hyperthermia, diaphoresis, shivering, blood pressure lability, and mydriasis; neuromuscular abnormalities such as hyperreflexia, myoclonus, tremor, rigidity, and ataxia; and gastrointestinal symptoms such as abdominal cramping, nausea, vomiting, and diarrhea.

MANAGEMENT: In general, serotonergic agents should not be used concurrently with MAOIs or other agents that possess MAOI activity (e.g., furazolidone, methylene blue, procarbazine). At least 14 days should elapse between discontinuation of MAOI therapy and initiation of treatment with serotonergic agents. A washout period of 5 to 14 days is usually recommended when switching from another antidepressant to an MAOI; however, the individual product labeling should be consulted.

References

  1. Pettinger WA, Soyangco FG, Oates JA (1968) "Inhibition of monoamine oxidase in man by furazolidone." Clin Pharmacol Ther, 9, p. 442-7
  2. Schulz R, Antonin KH, Hoffmann E, et al. (1989) "Tyramine kinetics and pressor sensitivity during monoamine oxidase inhibition by selegiline." Clin Pharmacol Ther, 46, p. 528-36
  3. Sternbach H (1988) "Danger of MAOI therapy after fluoxetine withdrawal." Lancet, 2, p. 850-1
  4. Sovner R, Wolfe J (1988) "Interaction between dextromethorphan and monoamine oxidase inhibitor therapy with isocarboxazid ." N Engl J Med, 319, p. 1671
  5. Bem JL, Peck R (1992) "Dextromethorphan. An overview of safety issues." Drug Saf, 7, p. 190-9
  6. Nierenberg DW, Semprebon M (1993) "The central nervous system serotonin syndrome." Clin Pharmacol Ther, 53, p. 84-8
  7. Graham PM, Potter JM, Paterson J (1982) "Combination monoamine oxidase inhibitor/tricyclic antidepressants interaction." Lancet, 2, p. 440
  8. Spiker DG, Pugh DD (1976) "Combining tricyclic and monoamine oxidase inhibitor antidepressants." Arch Gen Psychiatry, 33, p. 828-30
  9. White K, Pistole T, Boyd JL (1980) "Combined monoamine oxidase inhibitor-tricyclic antidepressant treatment: a pilot study." Am J Psychiatry, 137, p. 1422-5
  10. White K, Simpson G (1981) "Combined MAOI-tricyclic antidepressant treatment: a reevaluation." J Clin Psychopharmacol, 1, p. 264-82
  11. Rivers N, Horner B (1970) "Possible lethal reaction between nardil and dextromethorphan." Can Med Assoc J, 103, p. 85
  12. (2002) "Product Information. D.H.E. 45 (dihydroergotamine)." Sandoz Pharmaceuticals Corporation
  13. Sternbach H (1991) "The serotonin syndrome." Am J Psychiatry, 148, p. 705-13
  14. Feighner JP, Boyer WF, Tyler DL, Neborsky RJ (1990) "Adverse consequences of fluoxetine-MAOI combination therapy." J Clin Psychiatry, 51, p. 222-5
  15. Graham PM, Ilett KF (1988) "Danger of MAOI therapy after fluoxetine withdrawal." Lancet, 2, p. 1255-6
  16. Bhatara VS, Bandettini FC (1993) "Possible interaction between sertraline and tranylcypromine." Clin Pharm, 12, p. 222-5
  17. Suchowersky O, deVries JD (1990) "Interaction of fluoxetine and selegiline." Can J Psychiatry, 35, p. 571-2
  18. (2001) "Product Information. Effexor (venlafaxine)." Wyeth-Ayerst Laboratories
  19. Brannan SK, Talley BJ, Bowden CL (1994) "Sertraline and isocarboxazid cause a serotonin syndrome." J Clin Psychopharmacol, 14, p. 144-5
  20. Graber MA, Hoehns TB, Perry PJ (1994) "Sertraline-phenelzine drug interaction: a serotonin syndrome reaction." Ann Pharmacother, 28, p. 732-5
  21. Cetaruk EW, Aaron CK (1994) "Hazards of nonprescription medications." Emerg Med Clin North Am, 12, p. 483-510
  22. Diamond S (1995) "The use of sumatriptan in patients on monoamine oxidase inhibitors." Neurology, 45, p. 1039-40
  23. Phillips SD, Ringo P (1995) "Phenelzine and venlafaxine interaction." Am J Psychiatry, 152, p. 1400-1
  24. Klysner R, Larsen JK, Sorensen P, Hyllested M, Pedersen BD (1995) "Toxic interaction of venlafaxine and isocarboxazide." Lancet, 346, p. 1298-9
  25. Darcy PF, Griffin JP (1995) "Interactions with drugs used in the treatment of depressive illness." Adverse Drug React Toxicol Rev, 14, p. 211-31
  26. Heisler MA, Guidry JR, Arnecke B (1996) "Serotonin syndrome induced by administration of venlafaxine and phenelzine." Ann Pharmacother, 30, p. 84
  27. De Vita VT, Hahn MA, Oliverio VT (1965) "Monoamine oxidase inhibition by a new carcinostatic agent, n-isopropyl-a-(2-methylhydrazino)-p-toluamide (MIH). (30590)." Proc Soc Exp Biol Med, 120, p. 561-5
  28. Fischer P (1995) "Serotonin syndrome in the elderly after antidepressive monotherapy." J Clin Psychopharmacol, 15, p. 440-2
  29. Corkeron MA (1995) "Serotonin syndrome - a potentially fatal complication of antidepressant therapy." Med J Aust, 163, p. 481-2
  30. Thomas JM, Rubin EH (1984) "Case report of a toxic reaction from a combination of tryptophan and phenelzine." Am J Psychiatry, 141, p. 281-3
  31. Pope HG Jr, Jonas JM, Hudson JI, Kafka MP (1985) "Toxic reactions to the combination of monoamine oxidase inhibitors and tryptophan." Am J Psychiatry, 142, p. 491-2
  32. Alvine G, Black DW, Tsuang D (1990) "Case of delirium secondary to phenelzine/L-tryptophan combination." J Clin Psychiatry, 51, p. 311
  33. Staufenberg EF, Tantam D (1989) "Malignant hyperpyrexia syndrome in combined treatment." Br J Psychiatry, 154, p. 577-8
  34. Levy AB, Bucher P, Votolato N (1985) "Myoclonus, hyperreflexia and diaphoresis in patients on phenelzine- tryptophan combination treatment." Can J Psychiatry, 30, p. 434-6
  35. Beasley CM Jr, Masica DN, Heiligenstein JH, Wheadon DE, Zerbe RL (1993) "Possible monoamine oxidase inhibitor-serotonin uptake inhibitor interaction: fluoxetine clinical data and preclinical findings." J Clin Psychopharmacol, 13, p. 312-20
  36. Mills KC (1997) "Serotonin syndrome: A clinical update." Crit Care Clin, 13, p. 763
  37. Gardner DM, Lynd LD (1998) "Sumatriptan contraindications and the serotonin syndrome." Ann Pharmacother, 32, p. 33-8
  38. Mathew NT, Tietjen GE, Lucker C (1996) "Serotonin syndrome complicating migraine pharmacotherapy." Cephalalgia, 16, p. 323-7
  39. Weiner LA, Smythe M, Cisek J (1998) "Serotonin syndrome secondary to phenelzine-venlafaxine interaction." Pharmacotherapy, 18, p. 399-403
  40. Diamond S, Pepper BJ, Diamond ML, Freitag FG, Urban GJ, Erdemoglu AK (1998) "Serotonin syndrome induced by transitioning from phenelzine to venlafaxine: four patient reports." Neurology, 51, p. 274-6
  41. Chan BSH, Graudins A, Whyte IM, Dawson AH, Braitberg G, Duggin GG (1998) "Serotonin syndrome resulting from drug interactions." Med J Aust, 169, p. 523-5
  42. Brubacher JR, Hoffman RS, Lurin MJ (1996) "Serotonin syndrome from venlafaxine-tranylcypromine interaction." Vet Hum Toxicol, 38, p. 358-61
  43. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  44. Martin TG (1996) "Serotonin syndrome." Ann Emerg Med, 28, p. 520-6
  45. Jacob JE, Wagner ML, Sage JI (2003) "Safety of selegiline with cold medications." Ann Pharmacother, 37, p. 438-41
  46. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  47. (2005) "Product Information. Manerix (moclobemide)." Hoffmann-La Roche Limited
  48. Gillman PK (2005) "Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity." Br J Anaesth
  49. Bodner RA, Lynch T, Lewis L, Kahn D (1995) "Serotonin syndrome." Neurology, 45, p. 219-23
  50. Jimenez-Genchi A (2006) "Immediate switching from moclobemide to duloxetine may induce serotonin syndrome." J Clin Psychiatry, 67, p. 1821-1822
  51. (2008) "Product Information. Pristiq (desvenlafaxine)." Wyeth Laboratories
  52. (2009) "Product Information. Savella (milnacipran)." Forest Pharmaceuticals
  53. (2011) "Product Information. Viibryd (vilazodone)." Trovis Pharmaceuticals LLC
  54. (2013) "Product Information. Fetzima (levomilnacipran)." Forest Pharmaceuticals
View all 54 references

Switch to consumer interaction data

Moderate

dextromethorphan promethazine

Applies to: dextromethorphan / promethazine and dextromethorphan / promethazine

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

promethazine selegiline

Applies to: dextromethorphan / promethazine and Carbex (selegiline)

MONITOR: Coadministration of monoamine oxidase inhibitors (MAOIs) and phenothiazines may result in additive hypotensive effects and central nervous system effects such as dizziness, drowsiness, confusion, disorientation, memory loss, and seizures. MAOIs alone quite commonly produce orthostatic hypotension. This effect may stem from a gradual MAOI-induced accumulation of false neurotransmitters in peripheral adrenergic neurons that have minimal activity at alpha- and beta-adrenergic receptors, resulting in a functional block of sympathetic neurotransmission. Phenothiazines can also cause hypotension (including orthostatic hypotension), reflex tachycardia, increased pulse rate, syncope, and dizziness, particularly during initiation of treatment with parenteral doses. Low-potency agents such as chlorpromazine and thioridazine are more likely to induce these effects, which usually subside within the first couple of hours following administration. Tolerance to the hypotensive effects often develops after a few doses.

MONITOR: An increased incidence of extrapyramidal effects has been reported when some MAOIs and phenothiazines are used concomitantly. Data are limited, and the mechanism of interaction has not been established. There have also been rare reports of suspected neuroleptic malignant syndrome (NMS) in patients treated with irreversible, nonselective MAOIs and certain phenothiazines, although the role of MAOIs is uncertain. Since NMS is thought to be triggered by a sudden decrease of activity at central dopamine receptors, neuroleptics such as phenothiazines alone can cause the syndrome. In one report, a 70-year-old female inpatient of a psychiatric ward developed dyspnea, tachycardia, diffuse muscular rigidity, pyrexia, hypotension, cyanosis, hyperreflexia, coma, and a grand mal seizure while being treated with isocarboxazid and chlorpromazine. Laboratory findings included a mild neutrophil leucocytosis and elevated serum potassium and creatine phosphokinase. The patient improved within 24 hours after discontinuation of psychotropic medications and initiation of supportive measures and anticonvulsants, but she subsequently died from acute renal failure secondary to rhabdomyolysis. Another patient developed symptoms of NMS one week after initiating treatment with a tranylcypromine-trifluoperazine combination, immediately after the dose was doubled. The case was complicated by rhabdomyolysis and disseminated intravascular coagulation, but was treated successfully with dantrolene sodium and generous fluid therapy. In other reports, rare cases of fatal hyperthermia occurred during treatment with methotrimeprazine and pargyline or tranylcypromine. Again, the relationship to MAOIs is unknown, since phenothiazines alone have been associated with hyperpyrexia.

MANAGEMENT: Although often safe and effective, caution is advised during coadministration of MAOIs and phenothiazines, especially during the first few weeks of treatment. Close monitoring for development of hypotension is recommended. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Ambulatory patients should also be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities. Alcohol should be avoided, since it may increase hypotensive and CNS effects.

References

  1. Pettinger WA, Soyangco FG, Oates JA (1968) "Inhibition of monoamine oxidase in man by furazolidone." Clin Pharmacol Ther, 9, p. 442-7
  2. Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
  3. (2001) "Product Information. Phenergan (promethazine)." Wyeth-Ayerst Laboratories
  4. Ban TA (1975) "Drug interactions with psychoactive drugs." Dis Nerv Syst, 36, p. 164-6
  5. Poster DS (1978) "Procarbazine-prochlorperazine interaction: an underreported phenomenon." J Med, 9, p. 519-24
  6. (2001) "Product Information. Matulane (procarbazine)." Roche Laboratories
  7. De Vita VT, Hahn MA, Oliverio VT (1965) "Monoamine oxidase inhibition by a new carcinostatic agent, n-isopropyl-a-(2-methylhydrazino)-p-toluamide (MIH). (30590)." Proc Soc Exp Biol Med, 120, p. 561-5
  8. Kronig MH, Roose SP, Walsh BT, Woodring S, Glassman AH (1983) "Blood pressure effects of phenelzine." J Clin Psychopharmacol, 3, p. 307-10
  9. Golwyn DH, Sevlie CP (1993) "Monoamine oxidase inhibitor hypertensive crisis headache and orthostatic hypotension." J Clin Psychopharmacol, 13, p. 77-8
  10. (2001) "Product Information. Nardil (phenelzine)." Parke-Davis
  11. (2001) "Product Information. Parnate (tranylcypromine)." SmithKline Beecham
  12. (2001) "Product Information. Marplan (isocarboxazid)." Roche Laboratories
  13. (2001) "Product Information. Tacaryl (methdilazine)." Westwood Squibb Pharmaceutical Corporation
  14. Barsa JA, Saunders JC (1964) "A comparative study of tranylcypromine and paragyline." Psychopharmacologia, 6, p. 295-8
  15. Jones EM, Dawson A (1989) "Neuroleptic malignant syndrome: a case report with post-mortem brain and muscle pathology." J Neurol Neurosurg Psychiatry, 52, p. 1006-9
View all 15 references

Switch to consumer interaction data

Drug and food interactions

Major

selegiline food

Applies to: Carbex (selegiline)

GENERALLY AVOID: Foods that contain large amounts of tyramine may precipitate a hypertensive crisis in patients treated with monoamine oxidase inhibitors (MAOIs). The mechanism is inhibition of MAO-A, the enzyme responsible for metabolizing exogenous amines such as tyramine in the gut and preventing them from being absorbed intact. Once absorbed, tyramine is metabolized to octopamine, a substance that is believed to displace norepinephrine from storage granules. Although selegiline is considered a selective inhibitor of MAO-B, the selectivity may not be absolute even at recommended dosages. Rare cases of hypertensive reactions associated with ingestion of tyramine-containing foods have been reported in patients taking the recommended daily oral dose of selegiline. Data for transdermal selegiline indicate that the 6 mg/24 hour dosage may be given safely without dietary restrictions. However, limited data are available for higher dosages.

MANAGEMENT: Patients treated with oral selegiline and transdermal selegiline (greater than 6 mg/24 hour) should preferably avoid consumption of products that contain large amounts of amines and protein foods in which aging or breakdown of protein is used to increase flavor. These foods include cheese (particularly strong, aged or processed cheeses), sour cream, wine (particularly red wine), champagne, beer, pickled herring, anchovies, caviar, shrimp paste, liver (particularly chicken liver), dry sausage, salamis, figs, raisins, bananas, avocados, chocolate, soy sauce, bean curd, sauerkraut, yogurt, papaya products, meat tenderizers, fava bean pods, protein extracts, yeast extracts, and dietary supplements. Caffeine may also precipitate hypertensive crisis so its intake should be minimized as well. At least 14 days should elapse following discontinuation of selegiline therapy before these foods may be consumed. Specially designed reference materials and dietary consultation are recommended so that an appropriate and safe diet can be planned. Patients should also be advised to promptly seek medical attention if they experience potential signs and symptoms of a hypertensive crisis such as severe headache, visual disturbances, difficulty thinking, stupor or coma, seizures, chest pain, unexplained nausea or vomiting, and stroke-like symptoms. The recommended dosages of selegiline should not be exceeded, as it can increase the risk of nonselective MAO inhibition and a hypertensive crisis.

References

  1. Goldberg LI (1964) "Monoamine oxidase inhibitors: adverse reactions and possible mechanisms." JAMA, 190, p. 456-62
  2. Nuessle WF, Norman FC, Miller HE (1965) "Pickled herring and tranylcypromine reaction." JAMA, 192, p. 142-3
  3. Sweet RA, Liebowitz MR, Holt CS, Heimberg RG (1991) "Potential interactions between monoamine oxidase inhibitors and prescribed dietary supplements." J Clin Psychopharmacol, 11, p. 331-2
  4. McGrath PJ, Stewart JW, Quitkin FM (1989) "A possible L-deprenyl induced hypertensive reaction." J Clin Psychopharmacol, 9, p. 310-1
  5. (2001) "Product Information. Eldepryl (selegiline)." Somerset Pharmaceuticals Inc
  6. Lefebvre H, Noblet C, Morre N, Wolf LM (1995) "Pseudo-phaeochromocytoma after multiple drug interactions involving the selective monoamine oxidase inhibitor selegiline." Clin Endocrinol (Oxf), 42, p. 95-8
  7. Zetin M, Plon L, DeAntonio M (1987) "MAOI reaction with powdered protein dietary supplement." J Clin Psychiatry, 48, p. 499
  8. Domino EF, Selden EM (1984) "Red wine and reactions." J Clin Psychopharmacol, 4, p. 173-4
  9. Tailor SA, Shulman KI, Walker SE, Moss J, Gardner D (1994) "Hypertensive episode associated with phenelzine and tap beer--a reanalysis of the role of pressor amines in beer." J Clin Psychopharmacol, 14, p. 5-14
  10. Pohl R, Balon R, Berchou R (1988) "Reaction to chicken nuggets in a patient taking an MAOI." Am J Psychiatry, 145, p. 651
  11. Ito D, Amano T, Sato H, Fukuuchi Y (2001) "Paroxysmal hypertensive crises induced by selegiline in a patient with Parkinson's disease." J Neurol, 248, p. 533-4
  12. (2006) "Product Information. Emsam (selegiline)." Bristol-Myers Squibb
View all 12 references

Switch to consumer interaction data

Moderate

dextromethorphan food

Applies to: dextromethorphan / promethazine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

promethazine food

Applies to: dextromethorphan / promethazine

GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.

MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.

References

  1. Lutz EG (1976) "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA, 236, p. 2422-3
  2. Freed E (1981) "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust, 2, p. 44-5

Switch to consumer interaction data

Moderate

selegiline food

Applies to: Carbex (selegiline)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of central nervous system (CNS)-active agents. Use in combination may result in additive CNS depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled against driving, operating machinery, or engaging in potentially hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  5. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 5 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.