Skip to main content

Drug Interactions between calcium / ferrous fumarate / vitamin d and Lexxel

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

felodipine calcium carbonate

Applies to: Lexxel (enalapril / felodipine) and calcium / ferrous fumarate / vitamin d

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Moderate

calcium carbonate ferrous fumarate

Applies to: calcium / ferrous fumarate / vitamin d and calcium / ferrous fumarate / vitamin d

ADJUST DOSING INTERVAL: The bioavailability of orally administered iron may be reduced by concomitant administration of antacids or other agents with acid-neutralizing effects. The exact mechanism is unknown but may involve reduced iron solubility due to increase in gastric pH and/or reduced absorption due to complexation or precipitation of the iron. Based on existing data, sodium bicarbonate and calcium carbonate appear to have greater effects than antacids containing magnesium and aluminum hydroxides. In a study of patients with mild iron deficiency anemia, coadministration of ferrous sulfate with sodium bicarbonate 1 gram and calcium carbonate 500 mg reduced iron absorption by 50% and 67%, respectively, while 5 mL of an antacid containing magnesium and aluminum hydroxides had little effect. Another study also found no effect on iron absorption when ferrous sulfate (equivalent to 10 mg/kg of elemental iron) was coadministered with magnesium hydroxide (1 mg for every 5 mg of elemental iron ingested) in a group of healthy, fasting male subjects. In contrast, absorption of iron from ferrous sulfate and ferrous fumarate tablets was reduced by 37% and 31%, respectively, following administration of an antacid containing magnesium carbonate, magnesium hydroxide, and aluminum hydroxide in a study of healthy, iron-replete volunteers. Similarly, in a study of nine patients, coadministration of 5 mg of ferrous sulfate with a 35 gram dose of magnesium trisilicate was found to reduce iron absorption by an average of more than 70%. The interaction reportedly does not occur in the presence of ascorbic acid, which may competitively bind with iron and prevent the interference with iron absorption.

MANAGEMENT: To minimize the potential for interaction, it may be appropriate to administer oral iron preparations at least two hours apart from antacids or other agents with acid-neutralizing effects.

References

  1. O'Neil-Cutting MA, Crosby WH (1986) "The effect of antacids on the absorption of simultaneously ingested iron." JAMA, 255, p. 1468-70
  2. Hall GJ, Davis AE (1969) "Inhibition of iron absorption by magnesium trisilicate." Med J Aust, 2, p. 95-6
  3. Coste JF, de Bari VA, Keil LB, Needle MA (1977) "In-vitro interactions of oral hematinics." Curr Ther Res Clin Exp, 22, p. 205-15
  4. Corby DG, McCullen AH, Chadwick EW, Decker WJ "Effect of orally administered magnesium hydroxide in experimental iron intoxication." J Toxicol Clin Toxicol, 23, p. 489-99
  5. Gugler R, Allgayer H (1990) "Effects of antacids on the clinical pharmacokinetics of drugs. An update." Clin Pharmacokinet, 18, p. 210-9
  6. Rastogi SP, Padilla F, Boyd CM (1975) "Effect of aluminum hydroxide on iron absorption." Kidney Int, 8, p. 417
  7. Ekenved G, Halvorsen L, Solvell L (1976) "Influence of a liquid antacid on the absorption of different iron salts." Scand J Haematol, Suppl 28, p. 65-77
  8. Coste JF, De Barbi VA, Keil LB, Needle MA (1977) "In-vitro interactions of oral hemantics and antacid suspensions." Curr Ther Res Clin Exp, 22, p. 205-16
  9. Snyder BK, Clark RF (1999) "Effect of magnesium hydroxide administration on iron absorption after a supratherapeutic dose of ferrous sulfate in human volunteers: A randomized controlled trial." Ann Emerg Med, 33, p. 400-5
  10. Wallace KL, Curry SC, LoVecchio F, Raschke R (1999) "Effect of magnesium hydroxide on iron absorption after ferrous sulfate." Ann Emerg Med, 34, p. 685-6
  11. Pruchnicki MC, Coyle JD, Hoshaw-Woodard S, Bay WH (2002) "Effect of phosphate binders on supplemental iron absorption in healthy subjects." J Clin Pharmacol, 42, p. 1171-6
  12. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
View all 12 references

Switch to consumer interaction data

Minor

enalapril felodipine

Applies to: Lexxel (enalapril / felodipine) and Lexxel (enalapril / felodipine)

Calcium channel blockers and angiotensin converting enzyme (ACE) inhibitors may have additive hypotensive effects. While these drugs are often safely used together, careful monitoring of the systemic blood pressure is recommended during coadministration, especially during the first one to three weeks of therapy.

References

  1. Kaplan NM (1991) "Amlodipine in the treatment of hypertension." Postgrad Med J, 67 Suppl 5, s15-9
  2. DeQuattro V (1991) "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol, 14, iv28-32;
  3. Sun JX, Cipriano A, Chan K, John VA (1994) "Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects." Eur J Clin Pharmacol, 47, p. 285-9
  4. Di Somma S, et al. (1992) "Antihypertensive effects of verapamil, captopril and their combination at rest and during dynamic exercise." Arzneimittelforschung, 42, p. 103
View all 4 references

Switch to consumer interaction data

Minor

enalapril calcium carbonate

Applies to: Lexxel (enalapril / felodipine) and calcium / ferrous fumarate / vitamin d

Coadministration with antacids may decrease the oral bioavailability of captopril and other angiotensin converting enzyme (ACE) inhibitors due to delayed gastric emptying and/or elevated gastric pH. In 10 healthy volunteers, 50 mL of an antacid suspension decreased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of captopril (50 mg single oral dose) by 50% and 42%, respectively, compared to administration after fasting. The relative bioavailability of captopril was 0.66 with antacid, although its hypotensive activity did not seem to be affected. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may want to consider separating the administration times of ACE inhibitors and antacids or oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 1 to 2 hours.

References

  1. Mantyla R, Mannisto PT, Vuorela A, Sundberg S, Ottoila P (1984) "Impairment of captopril bioavailability by concomitant food and antacid intake." Int J Clin Pharmacol Ther Toxicol, 22, p. 626-9

Switch to consumer interaction data

Drug and food interactions

Moderate

enalapril food

Applies to: Lexxel (enalapril / felodipine)

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References

  1. (2002) "Product Information. Vasotec (enalapril)." Merck & Co., Inc
  2. Good CB, McDermott L (1995) "Diet and serum potassium in patients on ACE inhibitors." JAMA, 274, p. 538
  3. Ray K, Dorman S, Watson R (1999) "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens, 13, p. 717-20

Switch to consumer interaction data

Moderate

felodipine food

Applies to: Lexxel (enalapril / felodipine)

GENERALLY AVOID: The consumption of grapefruit juice may be associated with significantly increased plasma concentrations of some calcium channel blockers (CCBs) when they are administered orally. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. The interaction has been reported with the dihydropyridine CCBs (in roughly decreasing order of magnitude) felodipine, nisoldipine, nifedipine, and nimodipine, often with a high degree of interindividual variability. Grapefruit juice caused more than twofold increases in felodipine, nifedipine, and nisoldipine AUCs.

MANAGEMENT: The manufacturers of nifedipine and nisoldipine recommend avoiding grapefruit juice. Patients treated orally with other calcium channel blockers should be advised to avoid consumption of large amounts of grapefruits and grapefruit juice to prevent any undue fluctuations in serum drug levels. Increased effects on blood pressure may persist for up to 4 days after the consumption of grapefruit juice. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.

References

  1. Edgar B, Bailey D, Bergstrand R, Johnsson G, Regardh CG (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics of felodipine--and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. (2002) "Product Information. Plendil (felodipine)." Merck & Co., Inc
  3. (2002) "Product Information. Procardia (nifedipine)." Pfizer U.S. Pharmaceuticals
  4. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  5. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. (2001) "Product Information. Sular (nisoldipine)." Astra-Zeneca Pharmaceuticals
  10. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  11. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  12. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  13. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  14. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  15. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  16. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  17. Ho PC, Ghose K, Saville D, Wanwimolruk S (2000) "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol, 56, p. 693-8
  18. Fuhr U, Muller-Peltzer H, Kern R, et al. (2002) "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol, 58, p. 45-53
  19. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 19 references

Switch to consumer interaction data

Moderate

calcium carbonate food

Applies to: calcium / ferrous fumarate / vitamin d

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Mangels AR (2014) "Bone nutrients for vegetarians." Am J Clin Nutr, 100, epub
  6. Davies NT (1979) "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc, 38, p. 121-8
View all 6 references

Switch to consumer interaction data

Moderate

ferrous fumarate food

Applies to: calcium / ferrous fumarate / vitamin d

ADJUST DOSING INTERVAL: Concomitant use of some oral medications may reduce the bioavailability of orally administered iron, and vice versa.

Food taken in conjunction with oral iron supplements may reduce the bioavailability of the iron. However, in many patients intolerable gastrointestinal side effects occur necessitating administration with food.

MANAGEMENT: Ideally, iron products should be taken on an empty stomach (i.e., at least 1 hour before or 2 hours after meals), but if this is not possible, administer with meals and monitor the patient more closely for a subtherapeutic effect. Some studies suggest administration of iron with ascorbic acid may enhance bioavailability. In addition, administration of oral iron products and some oral medications should be separated whenever the bioavailability of either agent may be decreased. Consult the product labeling for specific separation times and monitor clinical responses as appropriate.

References

  1. "Product Information. Feosol (ferrous sulfate)." SmithKline Beecham
  2. (2021) "Product Information. Accrufer (ferric maltol)." Shield Therapeutics

Switch to consumer interaction data

Moderate

enalapril food

Applies to: Lexxel (enalapril / felodipine)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

felodipine food

Applies to: Lexxel (enalapril / felodipine)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

felodipine food

Applies to: Lexxel (enalapril / felodipine)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.